English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower

Centola, M., Poppleton, E., Ray, S., Centola, M., Welty, R., Valero, J., et al. (2024). A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower. Nature Nanotechnology, 19(2), 226-236. doi:10.1038/s41565-023-01516-x.

Item is

Files

show Files
hide Files
:
s41565-023-01516-x.pdf (Any fulltext), 8MB
Name:
s41565-023-01516-x.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Centola, Mathias1, 2, Author
Poppleton, Erik3, Author
Ray, Sujay4, Author
Centola, Martin5, Author                 
Welty, Robb4, Author
Valero, Julián1, 2, Author
Walter, Nils G.4, Author
Šulc, Petr1, 3, Author
Famulok, Michael1, 2, Author
Affiliations:
1LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany, ou_persistent22              
2Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany, ou_persistent22              
3School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA, ou_persistent22              
4Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA, ou_persistent22              
5Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068291              

Content

show
hide
Free keywords: DNA nanomachines, Molecular machines and motors
 Abstract: Molecular engineering seeks to create functional entities for modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most artificial molecular motors are driven by Brownian motion, in which, with few exceptions, the generated forces are non-directed and insufficient for efficient transfer to passive second-level components. Consequently, efficient chemical-fuel-driven nanoscale driver–follower systems have not yet been realized. Here we present a DNA nanomachine (70 nm × 70 nm × 12 nm) driven by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel to generate a rhythmic pulsating motion of two rigid DNA-origami arms. Furthermore, we demonstrate actuation control and the simple coupling of the active nanomachine with a passive follower, to which it then transmits its motion, forming a true driver–follower pair.

Details

show
hide
Language(s): eng - English
 Dates: 2023-02-272023-08-312023-10-192024-02
 Publication Status: Issued
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s41565-023-01516-x
BibTex Citekey: centola_rhythmically_2023
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Nanotechnology
  Other : Nat. Nanotechnol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 19 (2) Sequence Number: - Start / End Page: 226 - 236 Identifier: ISSN: 1748-3387
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000239770