English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  First ground-deployment of a new small-footprintcavity-ring-down spectrometer for NO3 and N2O5 in a temperate forest during the ACROSS campaign

Türk, G. N. T. E., Andersen, S. T., Dewald, P., Schuladen, J., Seubert, T., & Crowley, J. N. (2023). First ground-deployment of a new small-footprintcavity-ring-down spectrometer for NO3 and N2O5 in a temperate forest during the ACROSS campaign. EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, Abstract EGU23-5240. doi:10.5194/egusphere-egu23-5240.

Item is

Basic

show hide
Genre: Meeting Abstract

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Miscellaneous

Creators

show
hide
 Creators:
Türk, Gunther N. T. E.1, Author           
Andersen, Simone T.1, Author           
Dewald, Patrick1, Author           
Schuladen, Jan1, Author           
Seubert, Tobias, Author
Crowley, John N.1, Author           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Content

show
hide
Free keywords: -
 Abstract: At nighttime, when concentrations of the OH-radical are low, the nitrate radical, NO3, over takes the role of major initiator of the oxidation of many organic trace gases, especially those containing one or more double bonds. In contrast to daytime, where the lifetime of NO3 is very short due to its photolysis and reaction with NO, NO3 can reach mixing ratios of several tens of ppt at night. NO3 can also react with NO2 to form N2O5. As N2O5 is thermally stable, the three trace-gases usually exist in equilibrium:

NO3 + NO2 + M ⇌ N2O5 + M

Measurements of NO3 and N2O5 are central to our understanding of the fate of NOx at night. Loss of NO3 to gas-phase reactions (forming e.g. organic nitrates) has a different impact on NOx than formation of N2O5 which may hydrolyse on aerosol to form particulate nitrate.

During the ACROSS campaign in Rambouillet Forest (France), a recently built two-channel cavity-ring-down spectrometer was deployed for the first time to record mixing ratios of NO3 and N2O5 at night over a period of several weeks. NO3 was detected directly at 662nm in one channel while N2O5 was first converted to NO3 in a thermal dissociation inlet before being detected in the same way.

In this work, we describe the new instrument in detail and compare obtained data with those measured by an established cavity-ring-down instrument. We show that, at a sampling height of about 6m, NO3 and N2O5 mixing ratios were low and frequently below the detection limit of both instruments; the likely reasons for this are discussed.

Details

show
hide
Language(s): eng - English
 Dates: 2023-04
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: No review
 Identifiers: DOI: 10.5194/egusphere-egu23-5240
 Degree: -

Event

show
hide
Title: EGU General Assembly 2023
Place of Event: Vienna, Austria
Start-/End Date: 2023-04-24 - 2023-04-28

Legal Case

show

Project information

show

Source 1

show
hide
Title: EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023,
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: Abstract EGU23-5240 Start / End Page: - Identifier: -