Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  An inventory of human light exposure related behaviour

Siraji, M., Lazar, R., van Duijnhoven, J., Schlangen, L., Haque, S., Kalavally, V., et al. (2023). An inventory of human light exposure related behaviour. Scientific Reports, 13(1): 22151. doi:10.1038/s41598-023-48241-y.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
externe Referenz:
https://www.nature.com/articles/s41598-023-48241-y.pdf (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Siraji, MA, Autor
Lazar, RR, Autor
van Duijnhoven, J, Autor
Schlangen, LJM, Autor
Haque, S, Autor
Kalavally, V, Autor
Vetter, C, Autor
Glickman, GL, Autor
Smolders, KCHJ, Autor
Spitschan, M1, Autor                 
Affiliations:
1Research Group Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3360460              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Light exposure is an essential driver of health and well-being, and individual behaviours during rest and activity modulate physiologically relevant aspects of light exposure. Further understanding the behaviours that influence individual photic exposure patterns may provide insight into the volitional contributions to the physiological effects of light and guide behavioural points of intervention. Here, we present a novel, self-reported and psychometrically validated inventory to capture light exposure-related behaviour, the Light Exposure Behaviour Assessment (LEBA). An expert panel prepared the initial 48-item pool spanning different light exposure-related behaviours. Responses, consisting of rating the frequency of engaging in the per-item behaviour on a five-point Likert-type scale, were collected in an online survey yielding responses from a geographically unconstrained sample (690 completed responses, 74 countries, 28 time zones). The exploratory factor analysis (EFA) on an initial subsample (n = 428) rendered a five-factor solution with 25 items (wearing blue light filters, spending time outdoors, using a phone and smartwatch in bed, using light before bedtime, using light in the morning and during daytime). In a confirmatory factor analysis (CFA) performed on an independent subset of participants (n = 262), we removed two additional items to attain the best fit for the five-factor solution (CFI = 0.95, TLI = 0.95, RMSEA = 0.06). The internal consistency reliability coefficient for the total instrument yielded McDonald's Omega = 0.68. Measurement model invariance analysis between native and non-native English speakers showed our model attained the highest level of invariance (residual invariance CFI = 0.95, TLI = 0.95, RMSEA = 0.05). Lastly, a short form of the LEBA (n = 18 items) was developed using Item Response Theory on the complete sample (n = 690). The psychometric properties of the LEBA indicate the usability for measuring light exposure-related behaviours. The instrument may offer a scalable solution to characterise behaviours that influence individual photic exposure patterns in remote samples. The LEBA inventory is available under the open-access CC-BY license. Instrument webpage: https://leba-instrument.org/ GitHub repository containing this manuscript: https://github.com/leba-instrument/leba-manuscript .

Details

ausblenden:
Sprache(n):
 Datum: 2023-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41598-023-48241-y
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Scientific Reports
  Kurztitel : Sci. Rep.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Nature Publishing Group
Seiten: 15 Band / Heft: 13 (1) Artikelnummer: 22151 Start- / Endseite: - Identifikator: ISSN: 2045-2322
CoNE: https://pure.mpg.de/cone/journals/resource/2045-2322