English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Triggered contraction of self-assembled, micron-scale DNA nanotube rings

Illig, M., Jahnke, K., Weise, L. P., Scheffold, M., Mersdorf, U., Drechsler, H., et al. (2024). Triggered contraction of self-assembled, micron-scale DNA nanotube rings. Nature Communications, 15(1): 2307, pp. 1-12. doi: 10.1038/s41467-024-46339-z.

Item is

Files

show Files
hide Files
:
NatCommun_15_2024_2307.pdf (Any fulltext), 3MB
 
File Permalink:
-
Name:
NatCommun_15_2024_2307.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
NatCommun_15_2024_2307_Suppl1.pdf (Supplementary material), 6MB
 
File Permalink:
-
Name:
NatCommun_15_2024_2307_Suppl1.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
NatCommun_15_2024_2307_Suppl2.pdf (Supplementary material), 18MB
 
File Permalink:
-
Name:
NatCommun_15_2024_2307_Suppl2.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
NatCommun_15_2024_2307_Suppl3.pdf (Supplementary material), 167KB
 
File Permalink:
-
Name:
NatCommun_15_2024_2307_Suppl3.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
NatCommun_15_2024_2307_Suppl4.avi (Supplementary material), 43MB
 
File Permalink:
-
Name:
NatCommun_15_2024_2307_Suppl4.avi
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
video/x-msvideo
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
NatCommun_15_2024_2307_Suppl7.pdf (Supplementary material), 2MB
 
File Permalink:
-
Name:
NatCommun_15_2024_2307_Suppl7.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Illig, Maja1, Author           
Jahnke, Kevin2, Author           
Weise, Lukas P., Author
Scheffold, Marlene1, Author           
Mersdorf, Ulrike3, Author           
Drechsler, Hauke, Author
Zhang, Yixin, Author
Diez, Stefan, Author
Kierfeld, Jan, Author
Göpfrich, Kerstin2, Author           
Affiliations:
1Max Planck Institute for Medical Research, Max Planck Society, ou_1125545              
2Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society, ou_2364731              
3Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society, ou_1497700              

Content

show
hide
Free keywords: -
 Abstract: Contractile rings are formed from cytoskeletal filaments during cell division. Ring formation is induced by specific crosslinkers, while contraction is typically associated with motor protein activity. Here, we engineer DNA nanotubes and peptide-functionalized starPEG constructs as synthetic crosslinkers to mimic this process. The crosslinker induces bundling of ten to hundred DNA nanotubes into closed micron-scale rings in a one-pot self-assembly process yielding several thousand rings per microliter. Molecular dynamics simulations reproduce the detailed architectural properties of the DNA rings observed in electron microscopy. Theory and simulations predict DNA ring contraction - without motor proteins - providing mechanistic insights into the parameter space relevant for efficient nanotube sliding. In agreement between simulation and experiment, we obtain ring contraction to less than half of the initial ring diameter. DNA-based contractile rings hold promise for an artificial division machinery or contractile muscle-like materials.

Details

show
hide
Language(s): eng - English
 Dates: 2023-09-132024-02-212024-03-14
 Publication Status: Published online
 Pages: 12
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 15 (1) Sequence Number: 2307 Start / End Page: 1 - 12 Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723