English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Inhibition of BMP activity by the FGF signal promotes posterior neural development in zebrafish

Koshida, S., Shinya, M., Nikaido, M., Ueno, N., Schulte-Merker, S., Kuroiwa, A., et al. (2002). Inhibition of BMP activity by the FGF signal promotes posterior neural development in zebrafish. Developmental Biology, 244(1), 9-20. doi:10.1006/dbio.2002.0581.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Koshida, S, Author
Shinya, M, Author
Nikaido, M, Author
Ueno, N, Author
Schulte-Merker, S1, Author                 
Kuroiwa, A, Author
Takeda, H, Author
Affiliations:
1Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375716              

Content

show
hide
Free keywords: -
 Abstract: The expression patterns of region-specific neuroectodermal genes and fate-map analyses in zebrafish gastrulae suggest that posterior neural development is initiated by nonaxial signals, distinct from organizer-derived secreted bone morphogenetic protein (BMP) antagonists. This notion is further supported by the misexpression of a constitutively active form of zebrafish BMP type IA receptor (CA-BRIA) in the zebrafish embryos. It effectively suppressed the anterior neural marker, otx2, but not the posterior marker, hoxb1b. Furthermore, we demonstrated that the cells in the presumptive posterior neural region lose their neural fate only when CA-BRIA and Xenopus dominant-negative fibroblast growth factor (FGF) receptors (XFD) are coexpressed. The indications are that FGF signaling is involved in the formation of the posterior neural region, counteracting the BMP signaling pathway within the target cells. We then examined the functions of Fgf3 in posterior neural development. Zebrafish fgf3 is expressed in the correct place (dorsolateral margin) and at the correct time (late blastula to early gastrula stages), the same point that the most precocious posterior neural marker, hoxb1b, is first activated. Unlike other members of the FGF family, Fgf3 had little mesoderm-inducing activity. When ectopically expressed, Fgf3 expands the neural region with suppression of anterior neural fate. However, this effect was mediated by Chordino (zebrafish Chordin), because Fgf3 induces chordino expression in the epiblast and Fgf3-induced neural expansion was substantially suppressed in dino mutants with mutated chordino genes. The results obtained in the present study reveal multiple actions of the FGF signal on neural development: it antagonizes BMP signaling within posterior neural cells, induces the expression of secreted BMP antagonists, and suppresses anterior neural fate.

Details

show
hide
Language(s):
 Dates: 2002-04
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1006/dbio.2002.0581
PMID: 11900455
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Developmental Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Diego [etc.] : Academic Press
Pages: - Volume / Issue: 244 (1) Sequence Number: - Start / End Page: 9 - 20 Identifier: ISSN: 0012-1606
CoNE: https://pure.mpg.de/cone/journals/resource/954927680586