Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Periodic temperature changes drive the proliferation of self-replicating RNAs in vesicle populations

Salibi, E., Peter, B., Schwille, P., & Mutschler, H. (2023). Periodic temperature changes drive the proliferation of self-replicating RNAs in vesicle populations. Nature Communications, 14(1): 1222. doi:10.1038/s41467-023-36940-z.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Salibi, Elia1, Autor
Peter, Benedikt2, Autor           
Schwille, Petra2, Autor           
Mutschler, Hannes1, Autor
Affiliations:
1external, ou_persistent22              
2Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              

Inhalt

einblenden:
ausblenden:
Schlagwörter: RIBOZYME ACTIVITY; EVOLUTIONScience & Technology - Other Topics;
 Zusammenfassung: Growth and division of biological cells are based on the complex orchestration of spatiotemporally controlled reactions driven by highly evolved proteins. In contrast, it remains unknown how their primordial predecessors could achieve a stable inheritance of cytosolic components before the advent of translation. An attractive scenario assumes that periodic changes of environmental conditions acted as pacemakers for the proliferation of early protocells. Using catalytic RNA (ribozymes) as models for primitive biocatalytic molecules, we demonstrate that the repeated freezing and thawing of aqueous solutions enables the assembly of active ribozymes from inactive precursors encapsulated in separate lipid vesicle populations. Furthermore, we show that encapsulated ribozyme replicators can overcome freezing-induced content loss and successive dilution by freeze-thaw driven propagation in feedstock vesicles. Thus, cyclic freezing and melting of aqueous solvents - a plausible physicochemical driver likely present on early Earth - provides a simple scenario that uncouples compartment growth and division from RNA self-replication, while maintaining the propagation of these replicators inside new vesicle populations. How primordial cells could achieve inheritance of encapsulated components is still an open question. Here, the authors show that ribozymes can assemble in active forms and replicate in populations of membrane vesicles thanks to freeze-thaw cycles.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-03-03
 Publikationsstatus: Online veröffentlicht
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 001066713800001
DOI: 10.1038/s41467-023-36940-z
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 14 (1) Artikelnummer: 1222 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723