Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A single-domain spectral solver for spatially nonsmooth differential equations of quasistatic solid mechanics in polar coordinates

Perchikov, N., & Diehl, M. (2022). A single-domain spectral solver for spatially nonsmooth differential equations of quasistatic solid mechanics in polar coordinates. Acta Mechanica, 234, 599-647. doi:10.1007/s00707-022-03406-0.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
s00707-022-03406-0.pdf (Verlagsversion), 3MB
Name:
s00707-022-03406-0.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
The Authors

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Perchikov, Nathan1, 2, Autor           
Diehl, Martin3, 4, Autor           
Affiliations:
1Integrated Computational Materials Engineering, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3069168              
2Theory and Simulation, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863392              
3Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium; Department of Computer Science, KU Leuven, Celestijnenlaan 200 A, Leuven 3001, Belgium, ou_persistent22              
4Department of Computer Science, KU Leuven, Celestijnenlaan 200 A, 3001 Leuven, Belgium, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: In the present work, a spectral solver is developed for integration of certain differential equations of solid mechanics, namely static stress equilibrium in composite materials, described in cylindrical or spherical polar coordinates. The spectral approach is encompassed in approximating the displacement field using expansion into a series of Chebyshev polynomials in the radial coordinate and complex exponents in the angular direction. Consequently, differential operators in real space become algebraic operators in spectral space. The spatial heterogeneity and metric non-flatness pertinent to polar geometry are addressed by an iterative strategy, employing both second-order and first-order iterative solvers. The essence of the new contribution is in addressing the difficulty posed by the inherent nonsmoothness present in composite materials and the polar singularity. The interplay of the two produces instability, which is resolved in the proposed approach, specifically by using a new efficient linesearch algorithm, appropriate for the studied class of problems. The method is illustrated by analysis of 1D and 2D linear-elastic and linear-elastic–perfectly plastic response of composites to prescribed radial surface displacement. The developed method allows performing stress homogenization on polar representative volume elements, which has its conceptual advantages, while allowing similar runtime (for sufficient computing resources and an iterative strategy) to the one exhibited by spectral analysis in Cartesian coordinates.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2022-11-122022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1007/s00707-022-03406-0
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Acta Mechanica
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Wien : Springer-Verlag.
Seiten: - Band / Heft: 234 Artikelnummer: - Start- / Endseite: 599 - 647 Identifikator: ISSN: 0001-5970
CoNE: https://pure.mpg.de/cone/journals/resource/954925373809