English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Bounded rationality in structured density estimation

Teng, T., Wenliang, L., & Zhang, H. (2023). Bounded rationality in structured density estimation. In Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS 2023).

Item is

Basic

show hide
Genre: Conference Paper

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Teng, T1, Author                 
Wenliang, LK, Author
Zhang, H, Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Learning to accurately represent environmental uncertainty is crucial for adaptive and optimal behaviors in various cognitive tasks. However, it remains unclear how the human brain, constrained by finite cognitive resources, constructs an internal model from an infinite space of probability distributions. In this study, we explore how these learned distributions deviate from the ground truth, resulting in observable inconsistency in a novel structured density estimation task. During each trial, human participants were asked to form and report the latent probability distribution functions underlying sequentially presented independent observations. As the number of observations increased, the reported predictive density became closer to the ground truth. Nevertheless, we observed an intriguing inconsistency in human structure estimation, specifically a large error in the number of reported clusters. Such inconsistency is invariant to the scale of the distribution and persists across stimulus modalities. We modeled uncertainty learning as approximate Bayesian inference in a nonparametric mixture prior of distributions. Human reports were best explained under resource rationality embodied in a decaying tendency towards model expansion. Our study offers insights into human cognitive processes under uncertainty and lays the groundwork for further exploration of resource-rational representations in the brain under more complex tasks.

Details

show
hide
Language(s):
 Dates: 2023-11
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: Advances in Neural Information Processing Systems 36: 37th Conference on Neural Information Processing Systems (NeurIPS 2023)
Place of Event: New Orleans, LA, USA
Start-/End Date: 2023-12-10 - 2023-12-16

Legal Case

show

Project information

show

Source 1

show
hide
Title: Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS 2023)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -