English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Retrieval of Tropospheric NO2 Vertical Column Densities from Ground-Based MAX-DOAS Measurements in Lhasa, a City on the Tibetan Plateau

Cheng, S., Pu, G., Ma, J., Hong, H., Du, J., Yudron, T., et al. (2023). Retrieval of Tropospheric NO2 Vertical Column Densities from Ground-Based MAX-DOAS Measurements in Lhasa, a City on the Tibetan Plateau. Remote Sensing, 15(19): 4689. doi:10.3390/rs15194689.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Gold

Creators

show
hide
 Creators:
Cheng, Siyang, Author
Pu, Guijuan, Author
Ma, Jianzhong, Author
Hong, Hyunkee, Author
Du, Jun, Author
Yudron, Tseten, Author
Wagner, Thomas1, Author           
Affiliations:
1Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society, ou_1826293              

Content

show
hide
Free keywords: -
 Abstract: In order to investigate the abundance of and temporal variation in nitrogen dioxide (NO2) in the troposphere and validate the corresponding satellite products during a normal year and the lockdown period of coronavirus disease 2019 (COVID-19) in Lhasa, a city on the Tibetan Plateau (TP), ground-based remote-sensing measurements captured by applying multi-axis differential optical absorption spectroscopy (MAX-DOAS) were recorded from August 2021 to March 2023 at the Lhasa site (91.14°E, 29.66°N; 3552.5 m altitude). The NO2 differential slant column densities (dSCDs) were retrieved from the spectra of scattered solar light at different elevation angles. Then, the tropospheric NO2 vertical column densities (VCDs) were calculated with the geometric approximation method. Based on the retrieved tropospheric NO2 VCDs, we found that the pattern of monthly variation in tropospheric NO2 VCDs in Lhasa presented two peaks, one in winter and one around May. According to the monthly means of tropospheric NO2 VCDs during the COVID-19 lockdown, the NO2 background level in Lhasa was estimated to be 0.53 × 1015 molecules·cm−2. For diurnal variations in tropospheric NO2 VCDs, the morning and evening peaks disappeared during the COVID-19 lockdown period. The east–west direction (i.e., along the river valley) was the main path of NO2 transport and dispersion in Lhasa, but the tropospheric NO2 VCDs were little dependent on the wind direction or wind speed during the COVID-19 lockdown. The correlation coefficient of tropospheric NO2 VCDs was R = 0.33 (R = 0.43), with the averaged relative deviation of −28% (99%) for the TROPOMI (GEMS) relative to ground-based MAX-DOAS. The monthly deviations of tropospheric NO2 VCDs between ground-based MAX-DOAS and the satellite showed a dependence on NO2 abundance, with the maxima of the monthly positive deviations during the COVID-19 lockdown period. The GEMS could not capture the strong and systematic diurnal variation in tropospheric NO2 VCDs in the “normal” year well. During the COVID-19 lockdown, the GEMS (>2 × 1015 molecules·cm−2) overestimated the hourly levels measured by ground-based MAX-DOAS (<1.6 × 1015 molecules·cm−2). As a whole, these results are beneficial to understanding the influences of anthropogenic activities on NO2 background levels in Lhasa and to learning the accuracy of satellite products over the TP, with its high altitude and complex terrain.

Details

show
hide
Language(s): eng - English
 Dates: 2023-09-25
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.3390/rs15194689
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Remote Sensing
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Basel : Molecular Diversity Preservation International (MDPI)
Pages: 22 Volume / Issue: 15 (19) Sequence Number: 4689 Start / End Page: - Identifier: ISSN: 2072-4292
CoNE: https://pure.mpg.de/cone/journals/resource/2072-4292