Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
 ZurückNächste 
  Functional aggregation of cell-free proteins enables fungal ice nucleation

Schwidetzky, R., de Ribeiro, I. A., Bothen, N., Backes, A. T., DeVries, A. L., Bonn, M., et al. (2023). Functional aggregation of cell-free proteins enables fungal ice nucleation. Proceedings of the National Academy of Sciences of the United States of America, 120(46): e2303243120. doi:10.1073/pnas.2303243120.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://www.pnas.org/doi/pdf/10.1073/pnas.2303243120 (Verlagsversion)
Beschreibung:
-
OA-Status:
Hybrid

Urheber

einblenden:
ausblenden:
 Urheber:
Schwidetzky , Ralph, Autor
de Ribeiro , Ingrid Almeida, Autor
Bothen, Nadine1, Autor           
Backes, Anna T.2, Autor           
DeVries , Arthur L., Autor
Bonn , Mischa, Autor
Fröhlich-Nowoisky, Janine1, Autor           
Molinero , Valeria, Autor
Meister , Konrad, Autor
Affiliations:
1Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826290              
2Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at temperatures above −10 °C. Bacteria and fungi produce particularly potent INs that can promote water crystallization above −5 °C. Bacterial INs consist of extended protein units that aggregate to achieve superior functionality. Despite decades of research, the nature and identity of fungal INs remain elusive. Here, we combine ice nucleation measurements, physicochemical characterization, numerical modeling, and nucleation theory to shed light on the size and nature of the INs from the fungus Fusarium acuminatum. We find ice-binding and ice-shaping activity of Fusarium IN, suggesting a potential connection between ice growth promotion and inhibition. We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits that assemble into ice-nucleating complexes that can contain more than 100 subunits. Fusarium INs retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded proteins are initially present, suggesting robust pathways for their functional aggregation in cell-free aqueous environments. We conclude that the use of small proteins to build large assemblies is a common strategy among organisms to create potent biological INs.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-11-09
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1073/pnas.2303243120
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
  Andere : Proc. Acad. Sci. USA
  Andere : Proc. Acad. Sci. U.S.A.
  Andere : Proceedings of the National Academy of Sciences of the USA
  Kurztitel : PNAS
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : National Academy of Sciences
Seiten: 7 Band / Heft: 120 (46) Artikelnummer: e2303243120 Start- / Endseite: - Identifikator: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230