English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Plasticity in the developing chick visual system: topography and maintenance of experimentally induced ipsilateral projections

Thanos, S., & Dütting, D. (1988). Plasticity in the developing chick visual system: topography and maintenance of experimentally induced ipsilateral projections. The Journal of Comparative Neurology, 278(2), 303-311. doi:10.1002/cne.902780212.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Thanos, S1, Author           
Dütting, D1, Author           
Affiliations:
1Department Physical Biology, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3384683              

Content

show
hide
Free keywords: -
 Abstract: Transected ganglion cell axons from the adult retina are capable of reinnervating their central targets by growing into transplanted peripheral nerve (PN) segments. Injury of the optic nerve causes various metabolic and morphological changes in the retinal ganglion cell (RGC) perikarya and in the dendrites. The present work examined the dendritic trees of those ganglion cells surviving axotomy and of those whose served axons re-elongated in PN grafts to reach either the superior colliculus (SC), transplanted SC, or transplanted autologous thigh muscle. The elaboration of the dendritic trees was visualized by means of the strongly fluorescent carbocyanine dye DiI, which is taken up by axons and transported to the cell bodies and from there to the dendritic branches. Alternatively, retinofugal axons regrowing through PN grafts were anterogradely filled from the eye cup with rhodamine B-isothiocyanate. The transection of the optic nerve resulted in characteristic changes in the ganglion cell dendrites, particularly in the degeneration of most of the terminal and preterminal dendritic branches. This occurred within the first 1 to 2 weeks following axotomy. The different types of ganglion cells appear to vary in their sensitivity to axotomy, as reflected by a rapid degeneration of certain cell dendrites after severance of the optic nerve. The most vulnerable cells were those with small perikarya and small dendritic fields (type II), whereas larger cells with larger dendritic fields (type I and III) were slower to respond and less dramatically affected. Regrowth of the lesioned axons in peripheral nerve grafts and reconnection of the retina with various tissues did not result in a significant immediate recovery of ganglion cell dendrites, although it did prevent some axotomized cells from further progression toward posttraumatic cell death.

Details

show
hide
Language(s):
 Dates: 1988-12
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/cne.902780212
PMID: 3230167
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Comparative Neurology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Hoboken, N.J. : John Wiley & Sons
Pages: - Volume / Issue: 278 (2) Sequence Number: - Start / End Page: 303 - 311 Identifier: ISSN: 1550-7130
CoNE: https://pure.mpg.de/cone/journals/resource/111088197763336