English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Isotopic Evidence for Long-term Bioaccumulation of Perfluoroalkyl Substances (PFASs) in Icelandic seabirds

Shen, R., Ebinghaus, R., Vassão, D. G., Ratcliffe, N., & Larsen, T. (2023). Isotopic Evidence for Long-term Bioaccumulation of Perfluoroalkyl Substances (PFASs) in Icelandic seabirds. EcoEvoRxiv, 10120463. doi:10.5281/zenodo.10120463.

Item is

Files

show Files
hide Files
:
gea0137pre.pdf (Preprint), 854KB
Name:
gea0137pre.pdf
Description:
OA
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Shen, Rui, Author
Ebinghaus, Ralf, Author
Vassão, Daniel Giddings, Author
Ratcliffe, Norman, Author
Larsen, Thomas1, Author           
Affiliations:
1Department of Archaeology, Max Planck Institute of Geoanthropology, Max Planck Society, ou_3398738              

Content

show
hide
Free keywords: PFASs, Icelandic Seabirds, Temporal Dynamics, Stable Isotope Analysis, Foraging Ecology, Bioaccumulation, pollution, Marine Ecosystems, Icelandic Seabirds, Stable Isotope Analysis, Foraging Ecology, Bioaccumulation
 Abstract: Per- and polyfluoroalkyl substances (PFASs) are persistent anthropogenic pollutants with a widespread and significant impact on global marine ecosystems, particularly in the Arctic. Our study is centered in Iceland, an area where the merging of boreal and Arctic marine currents creates a complex ecological landscape. This setting is increasingly being influenced by the warming climate, adding another layer of complexity to the existing challenges posed by pollution. Focusing on two congeneric seabird species breeding in Iceland, the common guillemot (Uria aalge, UA), primarily a boreal species, and Brünnich's guillemot (Uria lomvia, UL), a true Arctic species, our research aims to monitor and understand the bioaccumulative behavior of PFASs. These seabirds, differing in ecological niches and migratory behaviors, serve as ideal sentinels for assessing the impacts of PFASs.
We collected blood plasma samples from both species (UA: n=67, UL: n=45) during their breeding season in June 2018 across Iceland. The analysis included PFASs measurement and stable isotopes of carbon (δ13C) and nitrogen (δ15N), offering insights into the seabirds' exposure levels and foraging behaviors, respectively. This dual-method approach provides a comprehensive assessment of how foraging patterns and past seasonal diet influence their PFASs exposure, shedding light on the ecological implications of these pollutants in the Arctic.
Our findings reveal the presence of C9-13 PFCAs and PFOS in all plasma samples, with a notable interspecies variation in exposure levels. Principal component analysis (PCA) indicates a bioaccumulative pattern predominantly driven by PFCAs homologues, highlighting PFOS persistence. UA generally showed higher exposure levels compared to UL (PFCAs: 10^1.7 ng/g DM, 10^1.5 ng/g DM; PFOS: 10^2.0 ng/g DM, 10^1.8 ng/g DM; total burden: 10^2.2 ng/g DM, 10^2.0 ng/g DM, respectively). Stable Isotope Analysis (SIA) indicated distinct foraging areas for UA, particularly in southern colonies with enriched δ13C values and δ15N enrichment, suggesting diverse food web structures influenced by Atlantic waters. In contrast, northern colonies showed uniformity in marine carbon intake and preference for less δ15N enriched sources. In addition, our findings suggest that PFAS exposure in these seabirds reflects chronic exposure to consistent dietary sources over time.
Despite limitations such as the absence of an isoscape around Iceland, our study underscores the vulnerability of Arctic seabirds to PFAS exposure and the persistence of these pollutants in Arctic ecosystems. The integration of SIA proves invaluable in deciphering foraging behavior and pollutant exposure. These findings contribute significantly to understanding pollution impact on Arctic wildlife, emphasizing the need for continued research in this domain.

Details

show
hide
Language(s): eng - English
 Dates: 2023-11-15
 Publication Status: Published online
 Pages: 26
 Publishing info: -
 Table of Contents: 1 introduction
2 Material and Methods
2.1 Study area
2.2 Sampla collection
2.3 PFASs Chemical Analysis
2.4 Stable Isotope Analysis
2.5 Statistical treatments
3 Results and discussion
3.1 Descriptive analysis of PFASs analysis
3.2 Principal component analysis (PCA) discerned bioaccumulative pattern
3.3 Interspecies comparison on bioaccumulative patterns
3.4 Spatial comparision on bioaccumulative patterns
3.5 Stable isotope analysis
3.6 Temporal dynamics of bioaccumulaion
4 Synthesis of findings
 Rev. Type: No review
 Identifiers: DOI: 10.5281/zenodo.10120463
Other: gea0137
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: EcoEvoRxiv
Source Genre: Web Page
 Creator(s):
Society for Open, Reliable, and Transparent Ecology and Evolutionary biology, Contributor              
Affiliations:
-
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 10120463 Start / End Page: - Identifier: URI: https://ecoevorxiv.org/