English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Transcendence of Sturmian Numbers over an Algebraic Base

Luca, F., Ouaknine, J., & Worrell, J. (2023). Transcendence of Sturmian Numbers over an Algebraic Base. doi:10.48550/arXiv.2308.13657.

Item is

Files

show Files
hide Files
:
arXiv:2308.13657.pdf (Preprint), 189KB
Name:
arXiv:2308.13657.pdf
Description:
File downloaded from arXiv at 2023-12-04 07:52
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Luca, Florian1, Author
Ouaknine, Joël2, Author           
Worrell, James1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Group J. Ouaknine, Max Planck Institute for Software Systems, Max Planck Society, ou_2541691              

Content

show
hide
Free keywords: Computer Science, Formal Languages and Automata Theory, cs.FL
 Abstract: We consider numbers of the form
$S_\beta(\boldsymbol{u}):=\sum_{n=0}^\infty \frac{u_n}{\beta^n}$ for
$\boldsymbol{u}=\langle u_n \rangle_{n=0}^\infty$ a Sturmian
sequence over a binary alphabet and $\beta$ an algebraic number with
$|\beta|>1$. We show that every such number is transcendental.
More generally, for a given base~$\beta$ and given irrational
number~$\theta$ we characterise the
$\overline{\mathbb{Q}}$-linear independence of sets of the form
$\left\{ 1,
S_\beta(\boldsymbol{u}^{(1)}),\ldots,S_\beta(\boldsymbol{u}^{(k)})
\right\}$, where $\boldsymbol{u}^{(1)},\ldots,\boldsymbol{u}^{(k)}$ are
Sturmian sequences having slope $\theta$.
We give an application of our main result to the theory of dynamical
systems, showing that for a contracted rotation on the unit circle
with algebraic slope, its limit set is either finite or consists
exclusively of transcendental elements other than its endpoints $0$
and $1$. This confirms a conjecture of Bugeaud, Kim, Laurent, and
Nogueira.

Details

show
hide
Language(s): eng - English
 Dates: 2023-08-252023
 Publication Status: Published online
 Pages: 8 p.
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 2308.13657
BibTex Citekey: Luca2308.13657
DOI: 10.48550/arXiv.2308.13657
URI: https://arxiv.org/abs/2308.13657
 Degree: -

Event

show

Legal Case

show

Project information

show

Source

show