English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Extent of carbon nitride photocharging controls energetics of hydrogen transfer in photochemical cascade processes

Savateev, A., Nolkemper, K., Kühne, T. D., Shvalagin, V., Markushyna, Y., & Antonietti, M. (2023). Extent of carbon nitride photocharging controls energetics of hydrogen transfer in photochemical cascade processes. Nature Communications, 14: 7684. doi:10.1038/s41467-023-43328-6.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 3MB
Name:
Article.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Savateev, Aleksandr1, Author                 
Nolkemper, Karlo, Author
Kühne, Thomas D., Author
Shvalagin, Vitaliy2, Author           
Markushyna, Yevheniia1, Author           
Antonietti, Markus3, Author           
Affiliations:
1Aleksandr Savateev, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2421702              
2Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863288              
3Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              

Content

show
hide
Free keywords: -
 Abstract: Graphitic carbon nitride is widely studied in organic photoredox catalysis. Reductive quenching of carbon nitride excited state is postulated in many photocatalytic transformations. However, the reactivity of this species in the turn over step is less explored. In this work, we investigate electron and proton transfer from carbon nitride that is photocharged to a various extent, while the negative charge is compensated either by protons or ammonium cations. Strong stabilization of electrons by ammonium cations makes proton-coupled electron transfer uphill, and affords air-stable persistent carbon nitride radicals. In carbon nitrides, which are photocharged to a smaller extent, protons do not stabilize electrons, which results in spontaneous charge transfer to oxidants. Facile proton-coupled electron transfer is a key step in the photocatalytic oxidative-reductive cascade – tetramerization of benzylic amines. The feasibility of proton-coupled electron transfer is modulated by adjusting the extent of carbon nitride photocharging, type of counterion and temperature.

Details

show
hide
Language(s): eng - English
 Dates: 2023-11-242023
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 14 Sequence Number: 7684 Start / End Page: - Identifier: ISSN: 2041-1723

Source 2

show
hide
Title: ChemRxiv : the Preprint Server for Chemistry
  Other : ChemRxiv
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC; Frankfurt am Main; Cambridge, London : ACS, GDCh, Royal Society of Chemistry
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ZDB: 2949894-7