Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Computational analysis of protein synthesis, diffusion, and binding in compartmental biochips

Förste, S., Vonshak, O., Daube, S. S., Bar-Ziv, R. H., Lipowsky, R., & Rudorf, S. (2023). Computational analysis of protein synthesis, diffusion, and binding in compartmental biochips. Microbial Cell Factories, 22: 244. doi:10.1186/s12934-023-02237-5.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
Article.pdf (Verlagsversion), 3MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
10.1186/s12934-023-02237-5

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Förste, Stefanie1, Autor           
Vonshak, Ohad, Autor
Daube, Shirley S., Autor
Bar-Ziv, Roy H., Autor
Lipowsky, Reinhard2, Autor                 
Rudorf, Sophia, Autor
Affiliations:
1Sophia Rudorf, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2205637              
2Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863327              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Protein complex assembly facilitates the combination of individual protein subunits into functional entities, and thus plays a crucial role in biology and biotechnology. Recently, we developed quasi-twodimensional, silicon-based compartmental biochips that are designed to study and administer the synthesis and assembly of protein complexes. At these biochips, individual protein subunits are synthesized from locally confined high-density DNA brushes and are captured on the chip surface by molecular traps. Here, we investigate single-gene versions of our quasi-twodimensional synthesis systems and introduce the trap-binding efficiency to characterize their performance. We show by mathematical and computational modeling how a finite trap density determines the dynamics of protein-trap binding and identify three distinct regimes of the trap-binding efficiency. We systematically study how protein-trap binding is governed by the system’s three key parameters, which are the synthesis rate, the diffusion constant and the trap-binding affinity of the expressed protein. In addition, we describe how spatially differential patterns of traps modulate the protein-trap binding dynamics. In this way, we extend the theoretical knowledge base for synthesis, diffusion, and binding in compartmental systems, which helps to achieve better control of directed molecular self-assembly required for the fabrication of nanomachines for synthetic biology applications or nanotechnological purposes.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2023-11-302023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1186/s12934-023-02237-5
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Microbial Cell Factories
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: BioMed Central
Seiten: - Band / Heft: 22 Artikelnummer: 244 Start- / Endseite: - Identifikator: ISSN: 1475-2859