Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Macromolecular condensation buffers intracellular water potential

Watson, J. L., Seinkmane, E., Styles, C. T., Mihut, A., Kruger, L. K., Mcnally, K. E., et al. (2023). Macromolecular condensation buffers intracellular water potential. Nature. doi:10.1038/s41586-023-06626-z.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Watson, Joseph L.1, Autor
Seinkmane, Estere1, Autor
Styles, Christine T.1, Autor
Mihut, Andrei1, Autor
Kruger, Lara K.1, Autor
Mcnally, Kerrie E.1, Autor
Planelles-Herrero, Vicente Jose1, Autor
Dudek, Michal1, Autor
McCall, Patrick M.2, Autor           
Barbiero, Silvia1, Autor
Vanden Oever, Michael1, Autor
Peak-Chew, Sew Yeu1, Autor
Porebski, Benjamin T.1, Autor
Zeng, Aiwei1, Autor
Rzechorzek, Nina M.1, Autor
Wong, David C. S.1, Autor
Beale, Andrew D.1, Autor
Stangherlin, Alessandra1, Autor
Riggi, Margot1, Autor
Iwasa, Janet1, Autor
Morf, Jorg1, AutorMiliotis, Christos1, AutorGuna, Alina1, AutorInglis, Alison J.1, AutorBrugues, Jan1, AutorVoorhees, Rebecca M.1, AutorChambers, Joseph E.1, AutorMeng, Qing-Jun1, AutorO'Neill, John S.1, AutorEdgar, Rachel S.1, AutorDerivery, Emmanuel1, Autor mehr..
Affiliations:
1external, ou_persistent22              
2Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions(1). Reciprocally, macromolecules restrict the movement of 'structured' water molecules within their hydration layers, reducing the available 'free' bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales(2,3); we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-10-182023-11-23
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 001092371400009
DOI: 10.1038/s41586-023-06626-z
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature
  Kurztitel : Nature
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238