English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Chemolithoautotrophic denitrification intensifies nitrogen loss in the Eastern Arabian Sea Shelf waters during sulphidic events

Pratihary, A., Lavik, G., Naqvi, S. W. A., Shirodkar, G., Sarkar, A., Marchant, H., et al. (2023). Chemolithoautotrophic denitrification intensifies nitrogen loss in the Eastern Arabian Sea Shelf waters during sulphidic events. PROGRESS IN OCEANOGRAPHY, 217: 103075. doi:10.1016/j.pocean.2023.103075.

Item is

Files

show Files
hide Files
:
1-s2.0-S0079661123001180-main.pdf (Publisher version), 8MB
Name:
1-s2.0-S0079661123001180-main.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Pratihary, Anil1, Author           
Lavik, Gaute1, Author           
Naqvi, S. W. A.1, Author           
Shirodkar, Gayatri2, Author
Sarkar, Amit2, Author
Marchant, Hannah1, Author           
Ohde, Thomas2, Author
Shenoy, Damodar2, Author
Kurian, Siby2, Author
Uskaikar, Hema2, Author
Kuypers, Marcel M. M.1, Author           
Affiliations:
1Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481693              
2external, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The Eastern Arabian Sea Shelf i.e. Western Indian Continental Shelf (WICS) - a known biogeochemical hotspot is characterized by monsoonal upwelling, seasonal O2 deficiency, extremely high N2O build-up and sulphidic events. The frequency and duration of the sulphidic events have increased over the last two decades, but their impact on the pelagic N cycling, N budget, and N2O dynamics is poorly constrained. Thus, to address these problems and assess their implications on WICS biogeochemistry, we carried out physico-chemical measurements, 15N-labeled incubations and bag incubations on five transects over the shelf during the sulphidic event (September-October) of 2011. We observed very high rates of sulphide-driven chemolithotrophic denitrification (1885-5825 nM N2 d-1) in the sulphidic, nitrate-depleted waters, and its potential occurrence in the sulphidefree, nitrate-replete waters (460-3137 nM N2 d-1), along with high transient N2O production, and comparably low rates of anammox (0-119 nM N2 d-1) and DNRA (0-45 nM N d-1). Despite the predominant cloud cover during the monsoon season, we could for the first time show the satellite image of a large colloidal sulphur (S0) plume associated with the sulphidic event off Western India providing further evidence of extensive sulphide oxidation coupled to denitrification. Sulphide-driven denitrification (mean rate = 2697 nM N2 d-1) appeared to be the dominant N loss process during the anoxic regime (September-October) replacing the chemoorganotrophic (i.e. heterotrophic) denitrification (342 nM N2 d-1) that predominates during the preceding suboxic regime (July-August). Overall, the highest sulphide-driven denitrification rate over the WICS was found to be the second highest among the anoxic coastal systems of the world. Furthermore, simultaneous consumption of NOx- and S2at a ratio close to the theoretical value in the anaerobic incubations of chemocline waters indicated that the sulphide-driven denitrifiers were fixing carbon. The estimated dark C production (0.21 g C m-2 d-1) due to chemolithoautotrophic denitrification was 18% of the photoautotrophic production and accounted for 15% of the total column productivity. Based on our conservative estimates, the chemolithoautotrophic denitrification was responsible for the removal of 0.4 Tg of fixed N and 0.57 Tg of sulphide, and fixation of 0.1 Tg of carbon annually in the shelf waters. Thus, the sulphidic event impacted the biogeochemistry and ecology, and modulated the N loss pathways and rates over the WICS. With the expansion and intensification of OMZs induced by global climate change, and the spreading of dead zones due to increasing anthropogenic activities, chemolithoautotrophic denitrification is likely to become increasingly significant in oceanic N cycle and impact the N budgets of shallow marine systems particularly.

Details

show
hide
Language(s): eng - English
 Dates: 2023-09
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PROGRESS IN OCEANOGRAPHY
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 217 Sequence Number: 103075 Start / End Page: - Identifier: ISSN: 0079-6611