hide
Free keywords:
Condensed Matter, Mesoscale and Nanoscale Physics, cond-mat.mes-hall, Condensed Matter, Materials Science, cond-mat.mtrl-sci
Abstract:
We study the spatiotemporal dynamics of ultrafast electron spin transport across nanometer-thick copper layers using broadband terahertz spectroscopy. Our analysis of temporal delays, broadening and attenuation of the spin-current pulse revealed ballistic-like propagation of the pulse peak, approaching the Fermi velocity, and diffusive features including a significant velocity dispersion. A comparison to the frequency-dependent Ficks law identified the diffusion-dominated transport regime for distances larger than 2 nm. The findings lie the groundwork for designing future broadband spintronic devices.