English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Photoswitchable endocytosis of biomolecular condensates in giant vesicles

Mangiarotti, A., Aleksanyan, M., Siri, M., Sun, T.-W., Lipowsky, R., & Dimova, R. (2024). Photoswitchable endocytosis of biomolecular condensates in giant vesicles. Advanced Science, 2309864. doi:10.1002/advs.202309864.

Item is

Files

show Files
hide Files
:
Preprint.pdf (Any fulltext), 2MB
Name:
Preprint.pdf
Description:
-
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Mangiarotti, Agustín1, Author                 
Aleksanyan, Mina1, Author                 
Siri, Macarena2, Author                 
Sun, Tsu-Wang1, Author                 
Lipowsky, Reinhard3, Author                 
Dimova, Rumiana1, Author                 
Affiliations:
1Rumiana Dimova, Nachhaltige und Bio-inspirierte Materialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3480070              
2Cecile Bidan, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2481713              
3Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863327              

Content

show
hide
Free keywords: endocytosis; giant vesicles; membrane morphology; photoswitchable lipids; protein-rich condensates; wetting
 Abstract: Interactions between membranes and biomolecular condensates can give rise to complex phenomena such as wetting transitions, mutual remodeling, and endocytosis. In this study, we demonstrate a light-triggered manipulation of condensate engulfment using giant vesicles containing photoswitchable lipids. UV irradiation increases the membrane area, facilitating a rapid condensate endocytosis, which can be reverted by blue light. The affinity of the protein-rich condensates to the membrane and the reversibility of the engulfment processes is quantified from confocal microscopy images. The degree of engulfment, whether partial or complete, depends on the initial membrane excess area and the relative sizes of vesicles and condensates. Theoretical estimates suggest that utilizing the light-induced excess area to increase the vesicles-condensate adhesion interface is energetically more favorable than the energy gain from folding the membrane into invaginations and tubes. Our overall findings demonstrate that membrane-condensate interactions can be easily and quickly modulated via light, providing a versatile system for building platforms to control cellular events and design intelligent drug delivery systems for cell repair.

Details

show
hide
Language(s): eng - English
 Dates: 2024-04-06
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advanced Science
  Other : Adv. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: - Sequence Number: 2309864 Start / End Page: - Identifier: ISSN: 2198-3844

Source 2

show
hide
Title: bioRxiv : the preprint server for biology
  Abbreviation : bioRxiv
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cold Spring Harbor, NY : Cold Spring Harbor Laboratory
Pages: - Volume / Issue: - Sequence Number: 2024.01.10.574984 Start / End Page: - Identifier: ZDB: 2766415-6