English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Beyond conventional carbon activation : creating porosity without etching using cesium effect

Li, J., Xu, Y., Li, P., Völkel, A., Saldaña, F. I., Antonietti, M., et al. (2024). Beyond conventional carbon activation: creating porosity without etching using cesium effect. Advanced Materials, 2311655. doi:10.1002/adma.202311655.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Li, Jiaxin1, Author           
Xu, Yaolin, Author
Li, Pengzhou, Author
Völkel, Antje2, Author           
Saldaña, Fernando Igoa, Author
Antonietti, Markus1, Author                 
Lopez Salas, Nieves3, Author                 
Odziomek, Mateusz4, Author                 
Affiliations:
1Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              
2Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863288              
3Nieves Lopez Salas, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3029702              
4Mateusz Odziomek, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3505121              

Content

show
hide
Free keywords: activation; cesium effect; molecular precursors; porous carbon; Zn-ion capacitors
 Abstract: Facile synthesis of porous carbon with high yield and high specific surface area from low-cost molecular precursors offers promising opportunities for their industrial applications. However, conventional activation methods using potassium and sodium hydroxides or carbonates suffer from low yields (< 20%) and poor control over porosity and composition especially when high specific surface areas are targeted (> 2000 m<sup>2</sup>·g<sup>−1</sup>) because nanopores are typically created by etching. Herein, we demonstrate a non-etching activation strategy using cesium salts of low-cost carboxylic acids as the sole precursor in producing porous carbons with yields of up to 25% and specific surface areas reaching 3008 m<sup>2</sup>·g<sup>−1</sup>. The pore size and oxygen content can be adjusted by tuning the synthesis temperature or changing the molecular precursor. Mechanistic investigation unravels the non-classical role of cesium as an activating agent. The cesium compounds that form in situ, including carbonates, oxides, and metallic cesium, have extremely low work function enabling electron injection into organic/carbonaceous framework, promoting condensation and intercalation of cesium ions into graphitic stacks forming slit pores. The resulting porous carbons deliver a high capacity of 252 mAh·g<sup>−1</sup> (567 F·g<sub>−1</sup>) and durability of 100,000 cycles as cathodes of Zn-ion capacitors, showing their potential for electrochemical energy storage.

Details

show
hide
Language(s): eng - English
 Dates: 2024-01-19
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/adma.202311655
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advanced Materials
  Abbreviation : Adv. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: - Sequence Number: 2311655 Start / End Page: - Identifier: ISSN: 0935-9648