日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Escape problem of magnetotactic bacteria - physiological magnetic field strength help magnetotactic bacteria navigate in simulated sediments

Codutti, A., Charsooghi, M., Marx, K., Cerdá Doñate, E., Munoz, O., Zaslansky, P., Telezki, V., Robinson, T., Faivre, D., & Klumpp, S. (2023). Escape problem of magnetotactic bacteria - physiological magnetic field strength help magnetotactic bacteria navigate in simulated sediments. bioRxiv: the preprint server for biology,. doi:10.1101/2023.12.08.570788.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000E-5550-8 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000E-5551-7
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Preprint.pdf (出版社版), 5MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-000E-5552-6
ファイル名:
Preprint.pdf
説明:
-
OA-Status:
Green
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Codutti, Agnese1, 2, 著者           
Charsooghi, Mohammad2, 著者           
Marx, Konrad, 著者
Cerdá Doñate, Elisa2, 著者           
Munoz, Omar, 著者
Zaslansky, P.3, 著者           
Telezki, Vitali, 著者
Robinson, Tom4, 著者                 
Faivre, Damien2, 著者           
Klumpp, Stefan, 著者
所属:
1Stefan Klumpp, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863329              
2Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863290              
3Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863285              
4Tom Robinson, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2288691              

内容説明

表示:
非表示:
キーワード: -
 要旨: Bacterial motility is typically studied in bulk solution, while their natural habitats often are complex environments. Here, we produced microfluidic channels that contained sediment-mimicking obstacles to study swimming of magnetotactic bacteria in a near-realistic environment. Magnetotactic bacteria are microorganisms that form chains of nanomagnets and that orient in Earth’s magnetic field. The obstacles were produced based on micro-computer tomography reconstructions of bacteria-rich sediment samples. We characterized the swimming of the cells through these channels and found that swimming throughput was highest for physiological magnetic fields. This observation was confirmed by extensive computer simulations using an active Brownian particle model, which were parameterized based on experimental trajectories, in particular with the trajectories near the sediment-mimicking obstacles, from which the interactions of the swimming bacteria with the obstacles were determined. The simulations were used to quantify the swimming throughput in detail. They showed the behavior seen in experiments, but also exhibited considerable variability between different channel geometries. The simulations indicate that swimming at strong field is impeded by the trapping of bacteria in “corners” that require transient swimming against the magnetic field for escape. At weak fields, the direction of swimming is almost random, making the process inefficient as well. We confirmed the trapping effect in our experiments and showed that lowering the field strength allows the bacteria to escape. We hypothesize that over the course of evolution, magnetotactic bacteria have thus evolved to produce magnetic properties that are adapted to the geomagnetic field in order to balance movement and orientation in such crowded environments.Competing Interest StatementThe authors have declared no competing interest.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2023-12-082023
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1101/2023.12.08.570788
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: bioRxiv : the preprint server for biology
  省略形 : bioRxiv
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Cold Spring Harbor, NY : Cold Spring Harbor Laboratory
ページ: - 巻号: - 通巻号: 2023.12.08.570788 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ZDB: 2766415-6