English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Characterisation of laminar and vascular spatiotemporal dynamics of CBV and BOLD signals using VASO and ME-GRE at 7T in humans

Dresbach, S., Huber, R., Gulban, O. F., Pizzuti, A., Trampel, R., Ivanov, D., et al. (2024). Characterisation of laminar and vascular spatiotemporal dynamics of CBV and BOLD signals using VASO and ME-GRE at 7T in humans. bioRxiv. doi:10.1101/2024.01.25.576050.

Item is

Files

show Files
hide Files
:
Dresbach_pre.pdf (Preprint), 13MB
Name:
Dresbach_pre.pdf
Description:
-
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Dresbach, Sebastian, Author
Huber, Renzo, Author
Gulban, Omer Faruk, Author
Pizzuti, Alessandra, Author
Trampel, Robert1, Author                 
Ivanov, Dimo, Author
Weiskopf, Nikolaus1, Author                 
Goebel, Rainer, Author
Affiliations:
1Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_2205649              

Content

show
hide
Free keywords: -
 Abstract: Interpretation of cortical laminar functional magnetic resonance imaging (fMRI) activity requires detailed knowledge of the spatiotemporal haemodynamic response across vascular compartments due to the well-known vascular biases (e.g. the draining veins). Further complications arise from the spatiotemporal hemodynamic response that differs depending on the duration of stimulation. This information is crucial for future studies using depth-dependent cerebral blood volume (CBV) measurements, which promise higher specificity for the cortical microvasculature than the blood oxygenation level dependent (BOLD) contrast. To date, direct information about CBV dynamics with respect to stimulus duration, cortical depth and vasculature is missing in humans. Therefore, we characterized the cortical depth-dependent CBV-haemodynamic responses across a wide set of stimulus durations with 0.9 mm isotropic spatial and 0.785 seconds effective temporal resolution in humans using slice-selective slabinversion vascular space occupancy (SS-SI VASO). Additionally, we investigated signal contributions from macrovascular compartments using fine-scale vascular information from multiecho gradient-echo (ME-GRE) data at 0.35 mm isotropic resolution. In total, this resulted in >7.5h of scanning per participant (n=5). We have three major findings: (I) While we could demonstrate that 1 second stimulation is viable using VASO, more than 12 seconds stimulation provides better CBV responses in terms of specificity to microvasculature, but durations beyond 24 seconds of stimulation may be wasteful for certain applications. (II) We observe that CBV responses show dilation patterns across the cortex. (III) While we found increasingly strong BOLD signal responses in vessel-dominated voxels with longer stimulation durations, we found increasingly strong CBV signal responses in vessel-dominated voxels only until 4 second stimulation durations. After 4 seconds, only the signal from non-vessel dominated voxels kept increasing. This might explain why CBV responses are more specific to the underlying neuronal activity for long stimulus durations.

Details

show
hide
Language(s): eng - English
 Dates: 2024-01-26
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1101/2024.01.25.576050
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: bioRxiv
Source Genre: Web Page
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -