English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  How solute atoms control aqueous corrosion of Al-alloys

Zhao, H., Yin, Y., Wu, Y., Zhang, S., Mingers, A. M., Ponge, D., et al. (2024). How solute atoms control aqueous corrosion of Al-alloys. Nature Communications, 15(1): 561. doi:10.1038/s41467-024-44802-5.

Item is

Files

show Files
hide Files
:
s41467-024-44802-5.pdf (Publisher version), 3MB
Name:
s41467-024-44802-5.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2024
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Zhao, Huan1, 2, Author           
Yin, Yue3, Author           
Wu, Yuxiang1, 4, Author           
Zhang, Siyuan5, Author           
Mingers, Andrea M.6, Author           
Ponge, Dirk1, 4, 7, 8, Author           
Gault, Baptiste9, 10, Author           
Rohwerder, Michael3, Author           
Raabe, Dierk7, 11, Author           
Affiliations:
1Mechanism-based Alloy Design, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863383              
2State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, China, ou_persistent22              
3Corrosion, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2074315              
4Hydrogen Embrittlement in High Performance Alloys, Interdepartmental and Partner Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3341923              
5Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2054294              
6Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
7Sustainable Synthesis of Materials, Interdepartmental and Partner Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3289784              
8High-Entropy Alloys, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3010672              
9Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
10Imperial College, Royal School of Mines, Department of Materials, London, SW7 2AZ, UK, ou_persistent22              
11Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              

Content

show
hide
Free keywords: -
 Abstract: Aluminum alloys play an important role in circular metallurgy due to their good recyclability and 95% energy gain when made from scrap. Their low density and high strength translate linearly to lower greenhouse gas emissions in transportation, and their excellent corrosion resistance enhances product longevity. The durability of Al alloys stems from the dense barrier oxide film strongly bonded to the surface, preventing further degradation. However, despite decades of research, the individual elemental reactions and their influence on the nanoscale characteristics of the oxide film during corrosion in multicomponent Al alloys remain unresolved questions. Here, we build up a direct correlation between the near-atomistic picture of the corrosion oxide film and the solute reactivity in the aqueous corrosion of a high-strength Al-Zn-Mg-Cu alloy. We reveal the formation of nanocrystalline Al oxide and highlight the solute partitioning between the oxide and the matrix and segregation to the internal interface. The sharp decrease in partitioning content of Mg in the peak-aged alloy emphasizes the impact of heat treatment on the oxide stability and corrosion kinetics. Through H isotopic labelling with deuterium, we provide direct evidence that the oxide acts as a trap for this element, pointing at the essential role of the Al oxide might act as a kinetic barrier in preventing H embrittlement. Our findings advance the mechanistic understanding of further improving the stability of Al oxide, guiding the design of corrosion-resistant alloys for potential applications.

Details

show
hide
Language(s): eng - English
 Dates: 2024-01-16
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41467-024-44802-5
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 15 (1) Sequence Number: 561 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723