English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications

Pozhydaieva, N., Billau, F. A., Wolfram-Schauerte, M., Ramírez Rojas, A. A., Paczia, N., Schindler, D., et al. (2024). Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications. bioRxiv: the preprint server for biology, doi: 10.1101/2024.01.28.577628.

Item is

Files

show Files
hide Files
:
2024.01.28.577628v1.full.pdf (Preprint), 2MB
Name:
2024.01.28.577628v1.full.pdf
Description:
-
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Pozhydaieva, Nadiia1, Author           
Billau, Franziska Anna1, Author
Wolfram-Schauerte, Maik1, Author           
Ramírez Rojas, Adán Andrés2, Author           
Paczia, Nicole3, Author                 
Schindler, Daniel2, Author                 
Höfer, Katharina1, Author                 
Affiliations:
1Max Planck Research Group Bacterial Epitranscriptomics, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266299              
2Core Facility MPG MAXGenesys DNAfoundry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266268              
3Core Facility Metabolomics and small Molecules Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266267              

Content

show
hide
Free keywords: -
 Abstract: Lytic bacteriophages hold substantial promise in medical and biotechnological applications. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions.Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.Competing Interest StatementK.H. and Na.P. filed a PCT application for "Engineering of Phages", European Patent Application No. 23 175 257.7. The other authors declare no competing interests.https://github.com/MaikTungsten/CRISPRT4

Details

show
hide
Language(s): eng - English
 Dates: 2024-01-28
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: No review
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: bioRxiv : the preprint server for biology
  Abbreviation : bioRxiv
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: doi: 10.1101/2024.01.28.577628 Start / End Page: - Identifier: ZDB: 2766415-6
CoNE: https://pure.mpg.de/cone/journals/resource/2766415-6