日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Protein-Assisted Large-Scale Assembly and Differential Patterning of DNA Origami Lattices

Gavrilovic, S., Brueggenthies, G. A., Weck, J. M., Heuer-Jungemann, A., & Schwille, P. (2024). Protein-Assisted Large-Scale Assembly and Differential Patterning of DNA Origami Lattices. Small. doi:10.1002/smll.202309680.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000E-61C9-2 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000E-61CA-1
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Gavrilovic, Svetozar1, 2, 著者           
Brueggenthies, Gereon Andreas, 著者
Weck, Johann Moritz3, 著者           
Heuer-Jungemann, Amelie3, 著者           
Schwille, Petra2, 著者           
所属:
1IMPRS-ML: Martinsried, Max Planck Institute of Biochemistry, Max Planck Society, ou_3531125              
2Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              
3Amelie Heuer-Jungemann / DNA Hybridnanomaterials, Max Planck Institute of Biochemistry, Max Planck Society, ou_3323947              

内容説明

表示:
非表示:
キーワード: DIVISIONChemistry; Science & Technology - Other Topics; Materials Science; Physics; bionanofabrication; DNA nanotechnology; patterning; self-assembly; synthetic biology;
 要旨: Nanofabrication has experienced a big boost with the invention of DNA origami, enabling the production and assembly of complex nanoscale structures that may be able to unlock fully new functionalities in biology and beyond. The remarkable precision with which these structures can be designed and produced is, however, not yet matched by their assembly dynamics, which can be extremely slow, particularly when attached to biological templates, such as membranes. Here, the rapid and controlled formation of DNA origami lattices on the scale of hundreds of micrometers in as little as 30 minutes is demonstrated, utilizing active patterning by the E.coli Min protein system, thereby yielding a remarkable improvement over conventional passive diffusion-based assembly methods. Various patterns, including spots, inverse spots, mazes, and meshes can be produced at different scales, tailored through the shape and density of the assembled structures. The differential positioning accomplished by Min-induced diffusiophoresis even allows the introduction of "pseudo-colors", i.e., complex core-shell patterns, by simultaneously patterning different DNA origami species. Beyond the targeted functionalization of biological surfaces, this approach may also be promising for applications in plasmonics, catalysis, and molecular sensing.
DNA origami revolutionized nanofabrication, allowing precise assembly of nanostructures. Despite this, large-scale assembly remains challenging. The authors present a breakthrough: the rapid and controlled formation of DNA origami lattices using the Min protein system. Achieving large-scale lattices in just 30 minutes, this method outperforms conventional diffusion-based approaches. Multiple patterns and core-shell architectures open up possibilities for advanced functionalization with various applications.image

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2024
 出版の状態: オンラインで出版済み
 ページ: 8
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): ISI: 001142248500001
DOI: 10.1002/smll.202309680
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Small
  その他 : Small
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Weinheim, Germany : Wiley-VCH
ページ: - 巻号: - 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 1613-6810
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017440_1