English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Printed smart devices for anti-counterfeiting allowing precise identification with household equipment

Zhang, J., Tan, R., Liu, Y., Albino, M., Zhang, W., Stevens, M. M., et al. (2024). Printed smart devices for anti-counterfeiting allowing precise identification with household equipment. Nature Communications, 15: 1040. doi:10.1038/s41467-024-45428-3.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 5MB
Name:
Article.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Zhang, Junfang1, Author           
Tan, Rong1, Author
Liu, Yuxin1, Author                 
Albino, Matteo, Author
Zhang, Weinan, Author
Stevens, Molly M., Author
Löffler, Felix F.1, Author           
Affiliations:
1Felix Löffler, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2385692              

Content

show
hide
Free keywords: -
 Abstract: Counterfeiting has become a serious global problem, causing worldwide losses and disrupting the normal order of society. Physical unclonable functions are promising hardware-based cryptographic primitives, especially those generated by chemical processes showing a massive challenge-response pair space. However, current chemical-based physical unclonable function devices typically require complex fabrication processes or sophisticated characterization methods with only binary (bit) keys, limiting their practical applications and security properties. Here, we report a flexible laser printing method to synthesize unclonable electronics with high randomness, uniqueness, and repeatability. Hexadecimal resistive keys and binary optical keys can be obtained by the challenge with an ohmmeter and an optical microscope. These readout methods not only make the identification process available to general end users without professional expertise, but also guarantee device complexity and data capacity. An adopted open-source deep learning model guarantees precise identification with high reliability. The electrodes and connection wires are directly printed during laser writing, which allows electronics with different structures to be realized through free design. Meanwhile, the electronics exhibit excellent mechanical and thermal stability. The high physical unclonable function performance and the widely accessible readout methods, together with the flexibility and stability, make this synthesis strategy extremely attractive for practical applications.

Details

show
hide
Language(s): eng - English
 Dates: 2024-02-032024
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41467-024-45428-3
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 15 Sequence Number: 1040 Start / End Page: - Identifier: ISSN: 2041-1723