English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Deciphering the role of Fe impurities in the electrolyte boosting the OER activity of LaNiO3

Cheraparambil, H., Vega-Paredes, M., Wang, Y., Tüysüz, H., Scheu, C., & Weidenthaler, C. (2024). Deciphering the role of Fe impurities in the electrolyte boosting the OER activity of LaNiO3. Journal of Materials Chemistry A, 12(9), 5194-5203. doi:10.1039/D3TA06733E.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Cheraparambil, Haritha1, Author           
Vega-Paredes, Miquel2, Author
Wang, Yue3, Author           
Tüysüz, Harun3, Author           
Scheu, Christina2, Author
Weidenthaler, Claudia1, Author           
Affiliations:
1Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1950291              
2Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany, ou_persistent22              
3Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1950290              

Content

show
hide
Free keywords: -
 Abstract: Perovskites have emerged as potential catalysts for the alkaline oxygen evolution reaction. Iron impurities in the electrolyte play an important role in enhancing the catalytic activity of Ni centres, but the nature of active sites is elusive. In this article, we report a detailed study of iron incorporation dynamics and provide direct spectroscopic evidence for surface re-construction and dynamic active site evolution in LaNiO3 perovskite using identical location scanning transmission electron microscopy, electron energy loss spectroscopy and in situ electrochemical Raman spectroscopy. We demonstrate that the electrocatalytic activity is enhanced up to an amount of 7.5 ppm Fe traces in the electrolyte by lowering the Tafel slope from 115 to 49 mV dec−1. The iron impurities in the electrolyte enter the perovskite structure, leading to the dissolution of the A-site, vacancy formation, and amorphization of surface layers. The origin of activity arises from these amorphous layers which are ∼5 nm thick and rich in Ni oxyhydroxides, Fe oxyhydroxides, and a Ni–O–Fe coordinated environment. Together with pH-dependent studies, we confirm the lattice oxygen mechanism in the presence of Fe impurities. Our work provides new insights into the design and a deeper understanding of Ni–Fe synergetics in perovskite-based catalysts for alkaline OER.

Details

show
hide
Language(s): eng - English
 Dates: 2023-11-032024-01-292024-03-07
 Publication Status: Issued
 Pages: 10
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1039/D3TA06733E
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Materials Chemistry A
  Abbreviation : J. Mater. Chem. A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, UK : Royal Society of Chemistry
Pages: - Volume / Issue: 12 (9) Sequence Number: - Start / End Page: 5194 - 5203 Identifier: ISSN: 2050-7488
CoNE: https://pure.mpg.de/cone/journals/resource/2050-7488