English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Microporous sulfur–carbon materials with extended sodium storage window

Eren, E., Esen, C., Scoppola, E., Song, Z., Senokos, E., Zschiesche, H., et al. (2024). Microporous sulfur–carbon materials with extended sodium storage window. Advanced Science, 2310196. doi:10.1002/advs.202310196.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Eren, Enis1, Author                 
Esen, Cansu2, Author                 
Scoppola, Ernesto3, Author                 
Song, Zihan1, Author           
Senokos, Evgeny1, Author           
Zschiesche, Hannes4, Author           
Cruz, Daniel, Author
Lauermann, Iver, Author
Tarakina, Nadezda V.4, Author                 
Kumru, Baris2, Author           
Antonietti, Markus5, Author                 
Giusto, Paolo1, Author                 
Affiliations:
1Paolo Giusto, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3245192              
2Baris Kumru, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3202957              
3Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              
4Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2522693              
5Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              

Content

show
hide
Free keywords: anode; carbon; in-operando SAXS; sodium-ion battery; sulfur
 Abstract: Developing high-performance carbonaceous anode materials for sodium-ion batteries (SIBs) is still a grand quest for a more sustainable future of energy storage. Introducing sulfur within a carbon framework is one of the most promising attempts toward the development of highly efficient anode materials. Herein, a microporous sulfur-rich carbon anode obtained from a liquid sulfur-containing oligomer is introduced. The sodium storage mechanism shifts from surface-controlled to diffusion-controlled at higher synthesis temperatures. The different storage mechanisms and electrode performances are found to be independent of the bare electrode material's interplanar spacing. Therefore, these differences are attributed to an increased microporosity and a thiophene-rich chemical environment. The combination of these properties enables extending the plateau region to higher potential and achieving reversible overpotential sodium storage. Moreover, in-operando small-angle X-ray scattering (SAXS) reveals reversible electron density variations within the pore structure, in good agreement with the pore-filling sodium storage mechanism occurring in hard carbons (HCs). Eventually, the depicted framework will enable the design of high-performance anode materials for sodium-ion batteries with competitive energy density.

Details

show
hide
Language(s): eng - English
 Dates: 2024-02-13
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/advs.202310196
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advanced Science
  Other : Adv. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: - Sequence Number: 2310196 Start / End Page: - Identifier: ISSN: 2198-3844