English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Relativistic perturbation theory for black-hole boson clouds

Cannizzaro, E., Sberna, L., Green, S. R., & Hollands, S. (2024). Relativistic perturbation theory for black-hole boson clouds. Physical Review Letters, 132(5): 051401. doi:10.1103/PhysRevLett.132.051401.

Item is

Files

show Files
hide Files
:
2309.10021.pdf (Preprint), 2MB
Name:
2309.10021.pdf
Description:
File downloaded from arXiv at 2024-02-15 10:36
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PhysRevLett.132.051401.pdf (Publisher version), 525KB
 
File Permalink:
-
Name:
PhysRevLett.132.051401.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), MPGR; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Cannizzaro, Enrico, Author
Sberna, Laura1, Author           
Green, Stephen R., Author
Hollands, Stefan, Author
Affiliations:
1Theoretical Cosmology, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1753351              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc,High Energy Physics - Theory, hep-th
 Abstract: We develop a relativistic perturbation theory for scalar clouds around
rotating black holes. We first introduce a relativistic product and
corresponding orthogonality relation between modes, extending a recent result
for gravitational perturbations. We then derive the analog of time-dependent
perturbation theory in quantum mechanics, and apply it to calculate
self-gravitational frequency shifts. This approach supersedes the
non-relativistic "gravitational atom" approximation, brings close agreement
with numerical relativity, and has practical applications for
gravitational-wave astronomy.

Details

show
hide
Language(s):
 Dates: 2023-09-182024-01-032024
 Publication Status: Issued
 Pages: 7+4 pages, 2+1 figures. v2: improved derivation of the main result, including two new appendices, and other minor changes. matches version accepted for publication in PRL
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 2309.10021
DOI: 10.1103/PhysRevLett.132.051401
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 132 (5) Sequence Number: 051401 Start / End Page: - Identifier: -