Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Unifying principles of generalization: past, present, and future

Wu, C., Meder, B., & Schulz, E. (submitted). Unifying principles of generalization: past, present, and future.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Urheber

einblenden:
ausblenden:
 Urheber:
Wu, CM1, Autor                 
Meder, B, Autor
Schulz, E2, Autor                 
Affiliations:
1Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3505519              
2Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3189356              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Generalization, defined as applying limited experiences to novel situations, represents a cornerstone of human intelligence. Our review traces the evolution and continuity of psychological theories of generalization, from its origins in concept learning (categorizing stimuli) and function learning (learning continuous input-output relationships) to domains such as reinforcement learning and latent structure learning. Historically, there have been fierce debates between approaches based on rule-based mechanisms, which rely on explicit hypotheses about environmental structure, and approaches based on similarity-based mechanisms, which leverage comparisons to prior instances. Each approach has unique advantages: Rules support rapid knowledge transfer, while similarity is computationally simple and flexible. Today, these debates have culminated in the development of hybrid models grounded in Bayesian principles, effectively marrying the precision of rules with the flexibility of similarity. The ongoing success of hybrid models not only bridges past dichotomies but also underscores the importance of integrating both rules and similarity for a comprehensive understanding of human generalization.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2024-02
 Publikationsstatus: Eingereicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1146/annurev-psych-021524-110810
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Annual Review of Psychology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Annual Reviews, Inc.
Seiten: - Band / Heft: Epub ahead Artikelnummer: - Start- / Endseite: - Identifikator: ISSN: 0066-4308
CoNE: https://pure.mpg.de/cone/journals/resource/954925458049