Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Global simulations of Tayler instability in stellar interiors: a long-time multistage evolution of the magnetic field

Monteiro, G., Guerrero, G., Del Sordo, F., Bonanno, A., & Smolarkiewicz, P. K. (2023). Global simulations of Tayler instability in stellar interiors: a long-time multistage evolution of the magnetic field. Monthly Notices of the Royal Astronomical Society, 521, 1415-1428. doi:10.1093/mnras/stad523.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://ui.adsabs.harvard.edu/abs/2023MNRAS.521.1415M (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Monteiro, G1, Autor           
Guerrero, G., Autor
Del Sordo, F., Autor
Bonanno, A., Autor
Smolarkiewicz, P. K., Autor
Affiliations:
1Max Planck Institute for Solar System Research, Max Planck Society, ou_1125546              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Sun: magnetic fields; stars: magnetic field; instabilities; MHD; Astrophysics - Solar and Stellar Astrophysics
 Zusammenfassung: Magnetic fields are observed in massive Ap/Bp stars and are presumably present in the radiative zone of solar-like stars. To date, there is no clear understanding of the dynamics of the magnetic field in stably stratified layers. A purely toroidal magnetic field configuration is known to be unstable, developing mainly non-axisymmetric modes. Rotation and a poloidal field component may lead to stabilization. Here we perform global MHD simulations with the EULAG-MHD code to explore the evolution of a toroidal magnetic field located in a layer whose Brunt-Väisälä frequency resembles the lower solar tachocline. Our numerical experiments allow us to explore the initial unstable phase as well as the long-term evolution of such field. During the first Alfven cycles, we observe the development of the Tayler instability with the prominent longitudinal wavenumber, m = 1. Rotation decreases the growth rate of the instability and eventually suppresses it. However, after a stable phase, energy surges lead to the development of higher-order modes even for fast rotation. These modes extract energy from the initial toroidal field. Nevertheless, our results show that sufficiently fast rotation leads to a lower saturation energy of the unstable modes, resulting in a magnetic topology with only a small fraction of poloidal field, which remains steady for several hundreds of Alfven traveltimes. The system then becomes turbulent and the field is prone to turbulent diffusion. The final toroidal-poloidal configuration of the magnetic field may represent an important aspect of the field generation and evolution in stably stratified layers.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/mnras/stad523
ISSN: 0035-8711
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Monthly Notices of the Royal Astronomical Society
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 521 Artikelnummer: - Start- / Endseite: 1415 - 1428 Identifikator: -