Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open source tools

Whiteway, M., Biderman, D., Hurwitz, C., Greenspan, N., Lee, R., Vishnubhotla, A., et al. (2023). Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open source tools. Poster presented at 52nd Annual Meeting of the Society for Neuroscience (Neuroscience 2023), Washington, DC, USA.

Item is

Urheber

ausblenden:
 Urheber:
Whiteway, M, Autor
Biderman, D, Autor
Hurwitz, CL, Autor
Greenspan, N, Autor
Lee, RS, Autor
Vishnubhotla, A, Autor
Schartner, M, Autor
Huntenburg, JM1, Autor                 
Khanal, A, Autor
Meijer, G, Autor
Noel, J, Autor
Pan-Vazquez, A, Autor
Socha, K, Autor
Urai, AE, Autor
Laboratory, I, Autor
Warren, R, Autor
Noone, D, Autor
Pedraja, F, Autor
Cunningham, JP, Autor
Sawtell, N, Autor
mehr..
Affiliations:
1Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017468              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Pose estimation algorithms are shedding new light on animal behavior and intelligence. Most existing models are only trained with labeled frames (supervised learning). Although effective in many cases, the fully supervised approach requires extensive image labeling, struggles to generalize to new videos, and produces noisy outputs that hinder downstream analyses. We address each of these limitations with a semi-supervised approach that leverages the spatiotemporal statistics of unlabeled videos in two different ways. First, we introduce unsupervised training objectives that penalize the network whenever its predictions violate smoothness of physical motion, multiple-view geometry, or depart from a low- dimensional subspace of plausible body configurations. Second, we design a new network architecture that predicts pose for a given frame using temporal context from surrounding unlabeled frames. These context frames help resolve brief occlusions or ambiguities between nearby and similar-looking body parts. The resulting pose estimation networks achieve better performance with fewer labels, generalize better to unseen videos, and provide smoother and more reliable pose trajectories for downstream analysis; for example, these improved pose trajectories exhibit stronger correlations with neural activity. We also propose a Bayesian post- processing approach based on deep ensembling and Kalman smoothing that further improves tracking accuracy and robustness. We demonstrate our results on a range of datasets, including head-fixed mice running on a treadmill, freely swimming fish, and head-fixed mice data from the International Brain Lab. In addition, we release a deep learning package that adheres to industry best practices, supporting easy model development and accelerated training and prediction. Our package is accompanied by a cloud application that allows users to annotate data, train networks, and predict new videos at scale, directly from the browser.

Details

ausblenden:
Sprache(n):
 Datum: 2023-11
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: 52nd Annual Meeting of the Society for Neuroscience (Neuroscience 2023)
Veranstaltungsort: Washington, DC, USA
Start-/Enddatum: 2023-11-11 - 2023-11-15

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: 52nd Annual Meeting of the Society for Neuroscience (Neuroscience 2023)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: PSTR512.04 Start- / Endseite: 1332 - 1333 Identifikator: -