Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Biomolecular condensate phase diagrams with a combinatorial microdroplet platform.

Arter, W. E., Qi, R., Erkamp, N. A., Krainer, G., Didi, K., Welsh, T. J., et al. (2022). Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nature communications, 13(1): 7845. doi:10.1038/s41467-022-35265-7.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Arter, William E, Autor
Qi, Runzhang, Autor
Erkamp, Nadia A, Autor
Krainer, Georg, Autor
Didi, Kieran, Autor
Welsh, Timothy J, Autor
Acker, Julia, Autor
Nixon-Abell, Jonathan, Autor
Qamar, Seema, Autor
Guillén-Boixet, Jordina1, Autor           
Franzmann, Titus1, Autor           
Kuster, David, Autor
Hyman, Anthony1, Autor           
Borodavka, Alexander, Autor
George-Hyslop, Peter St, Autor
Alberti, Simon1, Autor           
Knowles, Tuomas P J, Autor
Affiliations:
1Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The assembly of biomolecules into condensates is a fundamental process underlying the organisation of the intracellular space and the regulation of many cellular functions. Mapping and characterising phase behaviour of biomolecules is essential to understand the mechanisms of condensate assembly, and to develop therapeutic strategies targeting biomolecular condensate systems. A central concept for characterising phase-separating systems is the phase diagram. Phase diagrams are typically built from numerous individual measurements sampling different parts of the parameter space. However, even when performed in microwell plate format, this process is slow, low throughput and requires significant sample consumption. To address this challenge, we present here a combinatorial droplet microfluidic platform, termed PhaseScan, for rapid and high-resolution acquisition of multidimensional biomolecular phase diagrams. Using this platform, we characterise the phase behaviour of a wide range of systems under a variety of conditions and demonstrate that this approach allows the quantitative characterisation of the effect of small molecules on biomolecular phase transitions.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2022-12-21
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41467-022-35265-7
Anderer: cbg-8491
PMID: 36543777
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature communications
  Andere : Nat Commun
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 13 (1) Artikelnummer: 7845 Start- / Endseite: - Identifikator: -