English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Analysis of the Hamiltonian Monte Carlo genotyping algorithm on PROVEDIt mixtures including a novel precision benchmark.

Susik, M., & Sbalzarini, I. F. (2023). Analysis of the Hamiltonian Monte Carlo genotyping algorithm on PROVEDIt mixtures including a novel precision benchmark. Forensic science international. Genetics, 64: 102840. doi:10.1016/j.fsigen.2023.102840.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Susik, Mateusz1, Author
Sbalzarini, Ivo F.1, Author           
Affiliations:
1Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Content

show
hide
Free keywords: -
 Abstract: We provide an internal validation study of a recently published precise DNA mixture algorithm based on Hamiltonian Monte Carlo sampling (Susik et al., 2022). We provide results for all 428 mixtures analysed by Riman et al. (2021) and compare the results with two state-of-the-art software products: STRmix™  v2.6 and Euroformix v3.4.0. The comparison shows that the Hamiltonian Monte Carlo method provides reliable values of likelihood ratios (LRs) close to the other methods. We further propose a novel large-scale precision benchmark and quantify the precision of the Hamiltonian Monte Carlo method, indicating its improvements over existing solutions. Finally, we analyse the influence of the factors discussed by Buckleton et al. (2022).

Details

show
hide
Language(s):
 Dates: 2023-05-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.fsigen.2023.102840
Other: cbg-8510
PMID: 36764220
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Forensic science international. Genetics
  Other : Forensic Sci Int Genet
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 64 Sequence Number: 102840 Start / End Page: - Identifier: -