日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Efficient All-electron Hybrid Density Functionals for Atomistic Simulations Beyond 10,000 Atoms

Kokott, S., Merz, F., Yao, Y., Carbogno, C., Rossi, M., Havu, V., Rampp, M., Scheffler, M., & Blum, V. (2024). Efficient All-electron Hybrid Density Functionals for Atomistic Simulations Beyond 10,000 Atoms.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000F-03F3-B 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000F-03F4-A
資料種別: Preprint

ファイル

表示: ファイル
非表示: ファイル
:
2403.10343.pdf (プレプリント), 5MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-000F-03F5-9
ファイル名:
2403.10343.pdf
説明:
File downloaded from arXiv at 2024-03-18
OA-Status:
Not specified
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
2024
著作権情報:
© the Author(s)

関連URL

表示:
非表示:
URL:
https://arxiv.org/abs/2403.10343 (プレプリント)
説明:
-
OA-Status:
Not specified

作成者

表示:
非表示:
 作成者:
Kokott, S.1, 著者
Merz, F.2, 著者
Yao, Y.3, 著者
Carbogno, C.1, 著者
Rossi, M.4, 著者                 
Havu, V.5, 著者
Rampp, M.6, 著者
Scheffler, M.1, 著者
Blum, V.3, 7, 著者
所属:
1The NOMAD Laboratory at the Fritz Haber Institute of the Max-Planck-Gesellschaft and IRIS Adlershof of the Humboldt-Universität zu Berlin, ou_persistent22              
2Lenovo HPC Innovation Center, ou_persistent22              
3Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, ou_persistent22              
4Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3185035              
5Department of Applied Physics, School of Science, Aalto University, ou_persistent22              
6Max Planck Computing and Data Facility, ou_persistent22              
7Department of Chemistry, Duke University, ou_persistent22              

内容説明

表示:
非表示:
キーワード: Condensed Matter, Materials Science, cond-mat.mtrl-sci
 要旨: Hybrid density functional approximations (DFAs) offer compelling accuracy for ab initio electronic-structure simulations of molecules, nanosystems, and bulk materials, addressing some deficiencies of computationally cheaper, frequently used semilocal DFAs. However, the computational bottleneck of hybrid DFAs is the evaluation of the non-local exact exchange contribution, which is the limiting factor for the application of the method for large-scale simulations. In this work, we present a drastically optimized resolution-of-identity-based real-space implementation of the exact exchange evaluation for both non-periodic and periodic boundary conditions in the all-electron code FHI-aims, targeting high-performance CPU compute clusters. The introduction of several new refined Message Passing Interface (MPI) parallelization layers and shared memory arrays according to the MPI-3 standard were the key components of the optimization. We demonstrate significant improvements of memory and performance efficiency, scalability, and workload distribution, extending the reach of hybrid DFAs to simulation sizes beyond ten thousand atoms. As a necessary byproduct of this work, other code parts in FHI-aims have been optimized as well, e.g., the computation of the Hartree potential and the evaluation of the force and stress components. We benchmark the performance and scaling of the hybrid DFA based simulations for a broad range of chemical systems, including hybrid organic-inorganic perovskites, organic crystals and ice crystals with up to 30,576 atoms (101,920 electrons described by 244,608 basis functions).

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2024-03-15
 出版の状態: オンラインで出版済み
 ページ: 35
 出版情報: -
 目次: -
 査読: 査読なし
 識別子(DOI, ISBNなど): arXiv: 2403.10343
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: