Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Efficient all-electron hybrid density functionals for atomistic simulations beyond 10 000 atoms

Kokott, S., Merz, F., Yao, Y., Carbogno, C., Rossi, M., Havu, V., et al. (2024). Efficient all-electron hybrid density functionals for atomistic simulations beyond 10 000 atoms. The Journal of Chemical Physics, 161(2): 024112. doi:10.1063/5.0208103.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
024112_1_5.0208103.pdf (Verlagsversion), 7MB
Name:
024112_1_5.0208103.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2024
Copyright Info:
© Author(s)
:
SI-240604.pdf (Ergänzendes Material), 3MB
Name:
SI-240604.pdf
Beschreibung:
supplementary material: The file contains detailed structural information and references, specifying the sources of the structures. It includes tables with links to data in the NOMAD repository, making all input and output files publicly accessible. In addition, the file provides tables detailing simulation runtimes from start to finish and the number of SCF iterations performed.
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

ausblenden:
externe Referenz:
https://arxiv.org/abs/2403.10343 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://doi.org/10.1063/5.0208103 (Verlagsversion)
Beschreibung:
-
OA-Status:
Hybrid
externe Referenz:
https://dx.doi.org/10.17172/NOMAD/2024.03.13-9 (Forschungsdaten)
Beschreibung:
The FHI-aims code is an academic community code and available to any academic group, including its source code, for a voluntary license fee, enabling, access to the full sources and development thereof by any academic research group. All data that supports this work is openly available in this NOMAD data base. The corresponding URLs for individual data points are listed in the supplementary material.
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Kokott, S.1, Autor
Merz, F.2, Autor
Yao, Y.3, Autor
Carbogno, C.1, Autor
Rossi, M.4, Autor                 
Havu, V.5, Autor
Rampp, M.6, Autor
Scheffler, M.1, Autor
Blum, V.3, 7, Autor
Affiliations:
1The NOMAD Laboratory at the Fritz Haber Institute of the Max-Planck-Gesellschaft and IRIS Adlershof of the Humboldt-Universität zu Berlin, ou_persistent22              
2Lenovo HPC Innovation Center, ou_persistent22              
3Thomas Lord Department of Mechanical Engineering and Material Science, Duke University, ou_persistent22              
4Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3185035              
5Department of Applied Physics, School of Science, Aalto University, ou_persistent22              
6Max Planck Computing and Data Facility, ou_persistent22              
7Department of Chemistry, Duke University, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: Density functional theory, Atomistic simulations, Hybrid density functional calculations, High performance computing, Message passing interface
 Zusammenfassung: Hybrid density functional approximations (DFAs) offer compelling accuracy for ab initio electronic-structure simulations of molecules, nanosystems, and bulk materials, addressing some deficiencies of computationally cheaper, frequently used semilocal DFAs. However, the computational bottleneck of hybrid DFAs is the evaluation of the non-local exact exchange contribution, which is the limiting factor for the application of the method for large-scale simulations. In this work, we present a drastically optimized resolution-of-identity-based real-space implementation of the exact exchange evaluation for both non-periodic and periodic boundary conditions in the all-electron code FHI-aims, targeting high-performance central processing unit (CPU) compute clusters. The introduction of several new refined message passing interface (MPI) parallelization layers and shared memory arrays according to the MPI-3 standard were the key components of the optimization. We demonstrate significant improvements of memory and performance efficiency, scalability, and workload distribution, extending the reach of hybrid DFAs to simulation sizes beyond ten thousand atoms. In addition, we also compare the runtime performance of the PBE, HSE06, and PBE0 functionals. As a necessary byproduct of this work, other code parts in FHI-aims have been optimized as well, e.g., the computation of the Hartree potential and the evaluation of the force and stress components. We benchmark the performance and scaling of the hybrid DFA-based simulations for a broad range of chemical systems, including hybrid organic–inorganic perovskites, organic crystals, and ice crystals with up to 30 576 atoms (101 920 electrons described by 244 608 basis functions).

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-03-132024-06-192024-07-112024-07-14
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2403.10343
DOI: 10.1063/5.0208103
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : -
Grant ID : 951786
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : This work was funded by the NOMAD Center of Excellence (European Union’s Horizon 2020 research and innovation program, Grant Agreement No. 951786) and by the ERC Advanced Grant TEC1p (European Research Council, Grant Agreement No. 740233).
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

ausblenden:
Titel: The Journal of Chemical Physics
  Kurztitel : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Institute of Physics
Seiten: - Band / Heft: 161 (2) Artikelnummer: 024112 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226