日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Towards accurate and efficient live cell imaging data analysis

Han, H. (2019). Towards accurate and efficient live cell imaging data analysis. PhD Thesis.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000F-0F16-9 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000F-0F17-8
資料種別: 学位論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Han, Hongqing1, 2, 著者           
Zi, Zhike1, 監修者           
Schulz, Edda G.3, 監修者                 
所属:
1Cell Signaling Dynamics (Zhike Zi), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_2117284              
2Lebenswissenschaftliche Fakultät der Humboldt-Universität zu Berlin, ou_persistent22              
3Systems Epigenetics (Edda G. Schulz), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_2117286              

内容説明

表示:
非表示:
キーワード: -
 要旨: Live cell imaging based on time-lapse microscopy has been used to study dynamic cellular behaviors, such as cell cycle, cell signaling and transcription. Extracting cell lineage trees out of a time-lapse video requires cell segmentation and cell tracking. For long term live cell imaging, data analysis errors are particularly fatal. Even an extremely low error rate could potentially be amplified by the large number of sampled time points and render the entire video useless. In this work, we adopt a straightforward but practical design that combines the merits of manual and automatic approaches. We present a live cell imaging data analysis tool `eDetect', which uses post-editing to complement automatic segmentation and tracking. What makes this work special is that eDetect employs multiple interactive data visualization modules to guide and assist users, making the error detection and correction procedure rational and efficient. Specifically, two scatter plots and a heat map are used to interactively visualize single cells' visual features. The scatter plots position similar results in close vicinity, making it easy to spot and correct a large group of similar errors with a few mouse clicks, minimizing repetitive human interventions. The heat map is aimed at exposing all overlooked errors and helping users progressively approach perfect accuracy in cell lineage reconstruction. Quantitative evaluation proves that eDetect is able to largely improve accuracy within an acceptable time frame, and its performance surpasses the winners of most tasks in the `Cell Tracking Challenge', as measured by biologically relevant metrics.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 20192021-01-29
 出版の状態: オンラインで出版済み
 ページ: xii, 119 S.
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.18452/22324
URI: http://edoc.hu-berlin.de/18452/23024
 学位: 博士号 (PhD)

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: