English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Entropy-driven direct air electrofixation

Sun, Y., Li, M., Duan, J., Antonietti, M., & Chen, S. (2024). Entropy-driven direct air electrofixation. Angewandte Chemie International Edition, e202402678. doi:10.1002/anie.202402678.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sun, Yuntong, Author
Li, Ming, Author
Duan, Jingjing, Author
Antonietti, Markus1, Author                 
Chen, Sheng, Author
Affiliations:
1Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              

Content

show
hide
Free keywords: Nitrogen fixation; atmospheric air; High entropy; electrochemistry
 Abstract: According to the rule of chemical thermodynamics, the catalytic activation of small molecules (like N2 in air and CO2 in flue gas) generally exhibits a negative activity dependence on O2 owning to the competitive oxygen reduction reaction (ORR). Nevertheless, some catalysts can show positive activity dependence for N2 electrofixation, an important route to produce ammonia under ambient condition. Here we report that the positive activity dependence on O2 of (Ni0.20Co0.20Fe0.20Mn0.19Mo0.21)3S4 catalyst arises from high-entropy mechanism. Thorough experimental and theoretical studies, we demonstrate that under the reaction condition in the mixed N2/O2, the adsorption of O2 on high-entropy catalyst contributes to activating N2 molecules characteristic of elongated N≡N bond lengths. As comparison to the low- and media-entropy counterparts, high entropy can play the second role of attenuating competitive ORR by displaying a negative exponential entropy-ORR activity relationship. Accordingly, benefiting from the O2, the system for direct air electrofixation has demonstrated an ammonia yield rate of 47.70 μg h-1 cm-2, which is even 1.5 times of pure N2 feedstock (31.92 μg h-1 cm-2), overtaking all previous reports for this reaction. We expect the present finding providing an additional dimension to high entropy that leverages systems beyond the constraint of traditional rules.

Details

show
hide
Language(s): eng - English
 Dates: 2024-03-17
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Angewandte Chemie International Edition
  Abbreviation : Angew. Chem., Int. Ed.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: - Sequence Number: e202402678 Start / End Page: - Identifier: ISSN: 1433-7851

Source 2

show
hide
Title: Angewandte Chemie
  Abbreviation : Angew. Chem.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: - Sequence Number: e202402678 Start / End Page: - Identifier: ISSN: 0044-8249