Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Negative electronic compressibility in charge islands in twisted bilayer graphene

Dolleman, R. J., Rothstein, A., Fischer, A., Klebl, L., Waldecker, L., Watanabe, K., et al. (2024). Negative electronic compressibility in charge islands in twisted bilayer graphene. Physical Review B, 109(15): 155430. doi:10.1103/PhysRevB.109.155430.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
PhysRevB.109.155430.pdf (Verlagsversion), 5MB
Name:
PhysRevB.109.155430.pdf
Beschreibung:
-
OA-Status:
Sonstiges
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2024
Copyright Info:
© American Physical Society
Lizenz:
-
:
Negative_compressibility_supplementary.pdf (Ergänzendes Material), 10MB
Name:
Negative_compressibility_supplementary.pdf
Beschreibung:
Supplemental Material: additional bulk transport data on the 750-nm-wide constriction (S1), dependence of the Coulomb oscillations on the sample width (S2), the fitting results to determine the value of S (S3), the remaining power spectra and analysis with a fixed value of S (S4), additional results on a 0.65∘-twisted sample D5 (S5), control experiments in the absence of moir\'e on sample D6 (S6), observation of Coulomb oscillations in sample D4 (S7), results on the Coulomb oscillations with magnetic field reversal on sample D4 (S8); and additional results on the negative electronic compressibility in a magnetic field (S9).
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://arxiv.org/abs/2403.17840 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://doi.org/10.1103/PhysRevB.109.155430 (Verlagsversion)
Beschreibung:
-
OA-Status:
Sonstiges

Urheber

einblenden:
ausblenden:
 Urheber:
Dolleman, R. J.1, Autor
Rothstein, A.1, 2, Autor
Fischer, A.3, Autor
Klebl, L.4, Autor
Waldecker, L.1, Autor
Watanabe, K.5, Autor
Taniguchi, T.6, Autor
Kennes, D. M.3, 7, 8, Autor           
Libisch, F.9, Autor
Beschoten, B.1, Autor
Stampfer, C.1, 2, Autor
Affiliations:
1JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, ou_persistent22              
2Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, ou_persistent22              
3JARA-FIT and Institut für Theorie der Statistischen Physik, RWTH Aachen University, ou_persistent22              
4I. Institute of Theoretical Physics, University of Hamburg, ou_persistent22              
5Research Center for Functional Materials, National Institute for Materials Science, ou_persistent22              
6International Center for Materials Nanoarchitectonics, National Institute for Materials Science, ou_persistent22              
7Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
8Center for Free-Electron Laser Science, ou_persistent22              
9Institute for Theoretical Physics, Vienna University of Technology, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We report on the observation of negative electronic compressibility in twisted bilayer graphene for Fermi energies close to insulating states. To observe this negative compressibility, we take advantage of naturally occurring twist-angle domains that emerge during the fabrication of the samples, leading to the formation of charge islands. We accurately measure their capacitance using Coulomb oscillations, from which we infer the compressibility of the electron gas. Notably, we not only observe the negative electronic compressibility near correlated insulating states at integer filling, but also prominently near the band insulating state at full filling, located at the edges of both the flat and remote bands. Furthermore, the individual twist-angle domains yield a well-defined carrier density, enabling us to quantify the strength of electronic interactions and verify the theoretical prediction that the inverse negative capacitance contribution is proportional to the average distance between the charge carriers. A detailed analysis of our findings suggests that Wigner crystallization is the most likely explanation for the observed negative electronic compressibility.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-02-262022-12-162024-03-252024-04-232024-04-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2403.17840
DOI: 10.1103/PhysRevB.109.155430
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : 820254
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : The authors thank C. Volk and J. Sonntag for experimental support; F. Volmer, T. Ouaj, and M. Schmitz for assistance during sample fabrication; S. Trellenkamp and F. Lentz for electron-beam lithography, B. Shklovskii for correcting Eq. (2); and L. Gaudreau and M. Morgenstern for discussions. This work was supported by FLAG-ERA Grants No. 436607160 2D-NEMS, No. 437214324 TATTOOS, and No. 471733165 PhotoTBG by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1 – 390534769, by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the Priority Program SPP 2244 (535377524), and from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Program (Grant Agreement No. 820254). A.F., L.K., and D.M.K. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under RTG 1995 and within the Priority Program SPP 2244 “2DMP.” F.L. acknowledges support by the Austrian Science Fund (FWF), Project I-3827-N36, and by the COST Association, COST Action No. CA18234. This work was supported by the Max Planck–New York City Center for Nonequilibrium Quantum Phenomena. Fabrication of the samples was supported by the Helmholtz Nano Facility [63]. K.W. and T.T. acknowledge support from JSPS KAKENHI (Grants No. 19H05790, No. 20H00354, and No. 21H05233).
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review B
  Kurztitel : Phys. Rev. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Physical Society
Seiten: - Band / Heft: 109 (15) Artikelnummer: 155430 Start- / Endseite: - Identifikator: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008