Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Revealing Higher-Order Interactions in High-Dimensional Complex Systems: A Data-Driven Approach

Tabar, M., Nikakhtar, F., Parkavousi, L., Akhshi, A., Feudel, U., & Lehnertz, K. (2024). Revealing Higher-Order Interactions in High-Dimensional Complex Systems: A Data-Driven Approach. Physical Review X, 14: 011050. doi:10.1103/PhysRevX.14.011050.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
PhysRevX.14.011050.pdf (Verlagsversion), 3MB
Name:
PhysRevX.14.011050.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Tabar, M.R.R., Autor
Nikakhtar, F., Autor
Parkavousi, Laya1, Autor           
Akhshi, A., Autor
Feudel, U., Autor
Lehnertz, K., Autor
Affiliations:
1Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2570692              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Natural and manmade complex systems are comprised of different elementary units, being either system components or diverse subsystems as in the case of networked systems. These units interact with each other in a possibly nonlinear way, which results in a complex dynamics that is generally dissipative and nonstationary. One of the challenges in the modeling of such systems is the identification of not only pairwise but, more importantly, higher-order interactions, together with their directions and strengths from measured multivariate time series. Here, we propose a novel data-driven approach for characterizing interactions of different orders. Our approach is based on solving a set of linear equations constructed from Kramers-Moyal coefficients derived from statistical moments of N-dimensional multivariate time series. We demonstrate the substantial potential for applications by a data-driven reconstruction of interactions in various multidimensional and networked dynamical systems.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-03-18
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1103/PhysRevX.14.011050
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : --
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

ausblenden:
Titel: Physical Review X
  Kurztitel : Phys. Rev. X
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : American Physical Society
Seiten: - Band / Heft: 14 Artikelnummer: 011050 Start- / Endseite: - Identifikator: Anderer: 2160-3308
CoNE: https://pure.mpg.de/cone/journals/resource/2160-3308