English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Effective convergence of coranks of random Rédei matrices

Koymans, P., & Pagano, C. (2024). Effective convergence of coranks of random Rédei matrices. Acta Arithmetica, 212(4), 337-358. doi:10.4064/aa230318-4-1.

Item is

Basic

show hide
Genre: Journal Article
Latex : Effective convergence of coranks of random R\'edei matrices

Files

show Files
hide Files
:
2005.12899.pdf (Preprint), 208KB
 
File Permalink:
-
Name:
2005.12899.pdf
Description:
File downloaded from arXiv at 2024-04-02 10:00
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Koymans-Pagano_Effective convergence of coranks of random Redei matrices_2024.pdf (Publisher version), 472KB
 
File Permalink:
-
Name:
Koymans-Pagano_Effective convergence of coranks of random Redei matrices_2024.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Mathematics, MBMT; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Green
Locator:
https://doi.org/10.4064/aa230318-4-1 (Publisher version)
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Koymans, Peter1, Author                 
Pagano, Carlo1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Number Theory
 Abstract: -

Details

show
hide
Language(s): eng - English
 Dates: 2024
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2005.12899
DOI: 10.4064/aa230318-4-1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Acta Arithmetica
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Institute of Mathematics, Polish Academy of Sciences
Pages: - Volume / Issue: 212 (4) Sequence Number: - Start / End Page: 337 - 358 Identifier: -