Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Combinatorial selective ER-phagy remodels the ER during neurogenesis

Hoyer, M. J., Capitanio, C., Smith, I. R., Paoli, J. C., Bieber, A., Jiang, Y., et al. (2024). Combinatorial selective ER-phagy remodels the ER during neurogenesis. Nature Cell Biology, 26, 378-392. doi:10.1038/s41556-024-01356-4.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Hoyer, Melissa J.1, Autor
Capitanio, Cristina2, 3, Autor           
Smith, Ian R.1, Autor
Paoli, Julia C.1, Autor
Bieber, Anna2, 3, Autor           
Jiang, Yizhi1, Autor
Paulo, Joao A.1, Autor
Gonzalez-Lozano, Miguel A.1, Autor
Baumeister, Wolfgang4, Autor           
Wilfling, Florian3, Autor                 
Schulman, Brenda A.3, Autor           
Harper, J. Wade1, Autor
Affiliations:
1external, ou_persistent22              
2IMPRS-ML: Martinsried, Max Planck Institute of Biochemistry, Max Planck Society, Am Klopferspitz 18, 82152 Martinsried, DE, ou_3531125              
3Schulman, Brenda / Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Max Planck Society, ou_2466699              
4Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565142              

Inhalt

einblenden:
ausblenden:
Schlagwörter: ENDOPLASMIC-RETICULUM TURNOVER; DECOY SEARCH STRATEGY; MASS-SPECTROMETRY; PROTEIN-PHOSPHORYLATION; DYNAMICS; PLATFORM; FOLLOWS; NEURONS; TEX264Cell Biology;
 Zusammenfassung: The endoplasmic reticulum (ER) employs a diverse proteome landscape to orchestrate many cellular functions, ranging from protein and lipid synthesis to calcium ion flux and inter-organelle communication. A case in point concerns the process of neurogenesis, where a refined tubular ER network is assembled via ER shaping proteins into the newly formed neuronal projections to create highly polarized dendrites and axons. Previous studies have suggested a role for autophagy in ER remodelling, as autophagy-deficient neurons in vivo display axonal ER accumulation within synaptic boutons, and the membrane-embedded ER-phagy receptor FAM134B has been genetically linked with human sensory and autonomic neuropathy. However, our understanding of the mechanisms underlying selective removal of the ER and the role of individual ER-phagy receptors is limited. Here we combine a genetically tractable induced neuron (iNeuron) system for monitoring ER remodelling during in vitro differentiation with proteomic and computational tools to create a quantitative landscape of ER proteome remodelling via selective autophagy. Through analysis of single and combinatorial ER-phagy receptor mutants, we delineate the extent to which each receptor contributes to both the magnitude and selectivity of ER protein clearance. We define specific subsets of ER membrane or lumenal proteins as preferred clients for distinct receptors. Using spatial sensors and flux reporters, we demonstrate receptor-specific autophagic capture of ER in axons, and directly visualize tubular ER membranes within autophagosomes in neuronal projections by cryo-electron tomography. This molecular inventory of ER proteome remodelling and versatile genetic toolkit provide a quantitative framework for understanding the contributions of individual ER-phagy receptors for reshaping ER during cell state transitions.
Hoyer et al. establish that selective autophagy mechanisms are needed to remodel the ER and its proteome during in vitro neurogenesis across neuronal subcompartments and decode the substrate selectivity of ER-phagy receptors.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-03-012024
 Publikationsstatus: Erschienen
 Seiten: 46
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 001178926100003
DOI: 10.1038/s41556-024-01356-4
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Cell Biology
  Andere : Nat. Cell Biol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Springer Nature
Seiten: - Band / Heft: 26 Artikelnummer: - Start- / Endseite: 378 - 392 Identifikator: ISSN: 1465-7392
CoNE: https://pure.mpg.de/cone/journals/resource/954925625310