Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  High-throughput viscoelastic characterization of cells in hyperbolic microchannels

Reichel, F., Goswami, R., Girardo, S., & Guck, J. (2024). High-throughput viscoelastic characterization of cells in hyperbolic microchannels. Lab on a Chip. doi:10.1039/D3LC01061A.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Lab Chip 2024 Reichel.pdf (Verlagsversion), 3MB
Name:
Lab Chip 2024 Reichel.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
his article is licensed under aCreative Commons Attribution 3.0 Unported Licence.

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Reichel, Felix1, 2, Autor           
Goswami, Ruchi1, 2, Autor           
Girardo, Salvatore1, 2, Autor           
Guck, Jochen1, 2, 3, Autor           
Affiliations:
1Guck Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164416              
2Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society, ou_3164414              
3Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Physik, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Extensive research has demonstrated the potential of cell viscoelastic properties as intrinsic indicators of cell state, functionality, and disease. For this, several microfluidic techniques have been developed to measure cell viscoelasticity with high-throughput. However, current microchannel designs introduce complex stress distributions on cells, leading to inaccuracies in determining the stress-strain relationship and, consequently, the viscoelastic properties. Here, we introduce a novel approach using hyperbolic microchannels that enable precise measurements under a constant extensional stress and offer a straightforward stress-strain relationship, while operating at a measurement rate of up to 100 cells per second. We quantified the stresses acting in the channels using mechanical calibration particles made from polyacrylamide (PAAm) and found that the measurement buffer, a solution of methyl cellulose and phosphate buffered saline, has a constant extensional viscosity of 0.5 Pa s up to 200 s-1. By measuring oil droplets with varying viscosities, we successfully detected changes in the relaxation time of the droplets and our approach could be used to get the interfacial tension and viscosity of liquid-liquid droplet systems from the same measurement. We further applied this methodology to PAAm microgel beads, demonstrating the accurate recovery of Young’s moduli and the near-ideal elastic behavior of the beads. To explore the influence of altered cell viscoelasticity, we treated HL60 human leukemia cells with Latrunculin B and Nocodazole, resulting in clear changes in cell stiffness while relaxation times were only minimally affected. In conclusion, our approach offers a streamlined and time-efficient solution for assessing the viscoelastic properties of large cell populations and other microscale soft particles.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-04-03
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1039/D3LC01061A
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Lab on a Chip
  Andere : Lab Chip
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge : Royal Society of Chemistry
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: ISSN: 1473-0197
CoNE: https://pure.mpg.de/cone/journals/resource/14730197