English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Emergence of fractal geometries in the evolution of a metabolic enzyme

Sendker, F. L., Lo, Y. K., Heimerl, T., Bohn, S., Persson, L. J., Mais, C.-N., et al. (2024). Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature, 628(8009), 894-900. doi:10.1038/s41586-024-07287-2.

Item is

Files

show Files

Locators

show
hide
Locator:
https://doi.org/10.1038/s41586-024-07287-2 (Publisher version)
Description:
-
OA-Status:
Hybrid

Creators

show
hide
 Creators:
Sendker, Franziska Luisa1, Author           
Lo, Yat Kei2, Author
Heimerl, Thomas2, Author
Bohn, Stefan2, Author
Persson, Louise J.2, Author
Mais, Christopher-Nils2, Author
Sadowska, Wiktoria2, Author
Paczia, Nicole3, Author                 
Nußbaum, Eva2, Author
del Carmen Sánchez Olmos, María4, Author
Forchhammer, Karl2, Author
Schindler, Daniel4, Author                 
Erb, Tobias J.5, Author                 
Benesch, Justin L. P.2, Author
Marklund, Erik G.2, Author
Bange, Gert2, 6, Author                 
Schuller, Jan M.2, Author
Hochberg, Georg K. A.1, Author                 
Affiliations:
1Max Planck Research Group Evolutionary Biochemistry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266300              
2external, ou_persistent22              
3Core Facility Metabolomics and small Molecules Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266267              
4Core Facility MPG MAXGenesys DNAfoundry, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266268              
5Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266303              
6Max Planck Fellow Molecular Physiology of Microbes, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3321791              

Content

show
hide
Free keywords: -
 Abstract: Fractals are patterns that are self-similar across multiple length-scales1. Macroscopic fractals are common in nature2–4; however, so far, molecular assembly into fractals is restricted to synthetic systems5–12. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpiński triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution.

Details

show
hide
Language(s): eng - English
 Dates: 2024-04-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature
  Abbreviation : Nature
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 628 (8009) Sequence Number: - Start / End Page: 894 - 900 Identifier: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238