Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Properties of the gas escaping from a non-isothermal porous dust surface layer of a comet

Skorov, Y., Reshetnyk, V., Markkanen, J., Mottola, S., Macher, W., Mokhtari, O., et al. (2024). Properties of the gas escaping from a non-isothermal porous dust surface layer of a comet. Monthly Notices of the Royal Astronomical Society, 527, 12268-12283. doi:10.1093/mnras/stad3994.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://ui.adsabs.harvard.edu/abs/2024MNRAS.52712268S (beliebiger Volltext)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Skorov, Y.1, Autor           
Reshetnyk, V., Autor
Markkanen, J., Autor
Mottola, S., Autor
Macher, W., Autor
Mokhtari, O., Autor
Thomas, N., Autor
Küppers, M., Autor
Hartogh, P1, Autor           
Affiliations:
1Planetary Science Department, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: methods: numerical; comets: general; comets: individual: 67P/Churyumov-Gerasimenko
 Zusammenfassung: Estimation of the properties of the sublimation products leaving the cometary nucleus is one of the significant questions in the study of the dusty-gas flow following the Rosetta mission. It is widely assumed that the temperature of the water molecules emitted is the temperature of ice directly exposed to the surface. However, it is the simplest non-verified idealization if the refractory porous material lays on the surface and controls the energy driving the ice sublimation. This highly non-isothermal surface layer should change the vapour temperature as the molecules pass through it from the icy region to the vacuum. A key sustaining observation here comes from the MIRO experiment on Rosetta which measured the velocity of water vapour. The observed gas velocities are visibly higher than can be explained by emission at typical ice surface temperature. To investigate the issue, we simulate a gas flow through a non-isothermal porous dust layer and analyse the temperature of molecules emitted. Monodisperse and bimodal layers, as well as layers made of porous aggregates, are considered. Modelling is carried out for various porosity values, different particle sizes, and dust layer thicknesses. The simulation results are embedded in two-layer thermal models including the effective thermal conductivity, volumetric light absorption, and the resistance of the dust layer to the gas flow.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2024
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/mnras/stad3994
ISSN: 0035-8711
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Monthly Notices of the Royal Astronomical Society
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: OUP
Seiten: - Band / Heft: 527 Artikelnummer: - Start- / Endseite: 12268 - 12283 Identifikator: -