日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Sensory and central contributions to motor pattern generation in a spiking, neuro-mechanical model of the salamander spinal cord

Pazzaglia, A., Bicanski, A., Ferrario, A., Arreguit, J. P., Ryczko, D., & Ijspeert, A. (2024). Sensory and central contributions to motor pattern generation in a spiking, neuro-mechanical model of the salamander spinal cord. bioRxiv. doi:10.1101/2024.04.24.591044.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000F-3BC9-D 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000F-3E8B-0
資料種別: Preprint

ファイル

表示: ファイル
非表示: ファイル
:
Pazzaglia_pre_v2.pdf (プレプリント), 4MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-000F-3E8C-F
ファイル名:
Pazzaglia_pre_v2.pdf
説明:
-
OA-Status:
Green
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

作成者

表示:
非表示:
 作成者:
Pazzaglia, Alessandro, 著者
Bicanski, Andrej1, 著者           
Ferrario, Andrea, 著者
Arreguit, Jonathan Patrick, 著者
Ryczko, Dimitri, 著者
Ijspeert, Auke, 著者
所属:
1Department Psychology (Doeller), MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_2591710              

内容説明

表示:
非表示:
キーワード: -
 要旨: This study introduces a novel neuromechanical model employing a detailed spiking neural network to explore the role of axial proprioceptive sensory feedback in salamander locomotion. Unlike previous studies that often oversimplified the dynamics of the locomotor networks, our model includes detailed simulations of the classes of neurons that are considered responsible for generating movement patterns. The locomotor circuits, modeled as a spiking neural network of adaptive leaky integrate-and-fire neurons, are coupled to a three-dimensional mechanical model of a salamander with realistic physical parameters and simulated muscles. In open-loop simulations (i.e., without sensory feedback) the model accurately replicates locomotor patterns observed in-vitro and in-vivo for swimming and trotting gaits. Additionally, a modular architecture of the descending reticulospinal (RS) drive to the central pattern generation (CPG) network, allows to accurately control the activation, frequency and phase relationship of the different sections of the limb and axial circuits. In closed-loop simulations (i.e. with the inclusion of axial proprioceptive sensory feedback), systematic evaluations reveal that intermediate values of feedback strength significantly enhance the locomotor efficiency and robustness to disturbances during swimming. Specifically, our results show that sensory feedback increases the tail beat frequency and reduces the intersegmental phase lag, contributing to more coordinated and faster movement patterns. Moreover, the presence of feedback expanded the stability region of the closed-loop swimming network, enhancing tolerance to a wider range of external stimulations, internal parameters’ modulation and noise levels. This study provides new insights into the complex interplay between central and peripheral pattern generation mechanisms, offering potential strategies for developing advanced biomimetic robots. Additionally, this study underscores the critical role of detailed, biologically-realistic neural networks to improve our understanding of vertebrate locomotion.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2024-05-02
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1101/2024.04.24.591044
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: bioRxiv
種別: Web Page
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: - 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): -