Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation

Li, J., Hashemi, P., Liu, T., Dang, K. M., Brunk, M. G. K., Mu, X., et al. (2024). 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation. Communications Materials, 5: 62. doi:10.1038/s43246-024-00503-6.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
s43246-024-00503-6.pdf (Verlagsversion), 4MB
Name:
s43246-024-00503-6.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2024
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1038/s43246-024-00503-6 (Verlagsversion)
Beschreibung:
-
OA-Status:
Gold

Urheber

einblenden:
ausblenden:
 Urheber:
Li, Jianfeng1, 2, Autor                 
Hashemi, Payam3, Autor                 
Liu, Tianyi1, Autor                 
Dang, Ka My1, 2, Autor           
Brunk, Michael G. K.1, 2, Autor                 
Mu, Xin1, Autor                 
Shaygan Nia, Ali3, Autor           
Sacher, Wesley D.1, 2, Autor                 
Feng, Xinliang3, Autor                 
Poon, Joyce K. S.1, 2, Autor                 
Affiliations:
1Nanophotonics, Integration, and Neural Technology, Max Planck Institute of Microstructure Physics, Max Planck Society, ou_3287471              
2Max Planck - University of Toronto Centre for Neural Science and Technology, Max Planck Institute of Microstructure Physics, Max Planck Society, ou_3524333              
3Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society, ou_3316580              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The exploration of neural circuitry is paramount for comprehending the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in 3D remains a formidable challenge. Here, we introduce a method for engineering the growth of 3D neural circuits with the capability for optical stimulation. We fabricate bioactive interfaces by melt electrospinning writing (MEW) 3D polycaprolactone (PCL) scaffolds followed by coating with titanium carbide (Ti3C2Tx MXene). Beyond enhancing hydrophilicity, cell adhesion, and electrical conductivity, the Ti3C2Tx MXene coating enables optocapacitance-based neuronal stimulation, induced by localized temperature increases upon illumination. This approach offers a pathway for additive manufacturing of neural tissues endowed with optical control, facilitating functional tissue engineering and neural circuit computation.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2024-04-24
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s43246-024-00503-6
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Communications Materials
  Kurztitel : Commun Mater
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Springer Nature
Seiten: - Band / Heft: 5 Artikelnummer: 62 Start- / Endseite: - Identifikator: ISSN: 2662-4443
CoNE: https://pure.mpg.de/cone/journals/resource/2662-4443