Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Biological computations: Limitations of attractor-based formalisms and the need for transients

Koch, D., Nandan, A. P., Ramesan, G., & Koseska, A. (2024). Biological computations: Limitations of attractor-based formalisms and the need for transients. Biochemical and Biophysical Research Communications, 720: 150069. doi:10.1016/j.bbrc.2024.150069.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1-s2.0-S0006291X24006053-main.pdf (Verlagsversion), 4MB
Name:
1-s2.0-S0006291X24006053-main.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2024
Copyright Info:
© 2024 The Authors.

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Gold
externe Referenz:
https://arxiv.org/abs/2404.10369 (Preprint)
Beschreibung:
see also separate PuRe item under different DOI!
OA-Status:
Grün

Urheber

einblenden:
ausblenden:
 Urheber:
Koch, Daniel1, Autor                 
Nandan, Akhilesh P.1, Autor                 
Ramesan, Gayathri1, 2, Autor                 
Koseska, Aneta1, Autor                 
Affiliations:
1Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behavior – caesar, Max Planck Society, ou_3361763              
2International Max Planck Research School (IMPRS) for Brain and Behavior, Max Planck Institute for Neurobiology of Behavior – caesar, Max Planck Society, ou_3481421              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Mesh Terms: Animals; Computer Simulation; Humans; Models, Biological; Models, Neurological; Nerve Net / physiology; Neurons* / physiology Signal Transduction
 Zusammenfassung: Living systems, from single cells to higher vertebrates, receive a continuous stream of non-stationary inputs that they sense, for e.g. via cell surface receptors or sensory organs. By integrating these time-varying, multi-sensory, and often noisy information with memory using complex molecular or neuronal networks, they generate a variety of responses beyond simple stimulus-response association, including avoidance behavior, life-long-learning or social interactions. In a broad sense, these processes can be understood as a type of biological computation. Taking as a basis generic features of biological computations, such as real-time responsiveness or robustness and flexibility of the computation, we highlight the limitations of the current attractor-based framework for understanding computations in biological
systems. We argue that frameworks based on transient dynamics away from attractors are better suited for the description of computations performed by neuronal and signaling networks. In particular, we discuss how quasi-stable transient dynamics from ghost states that emerge at criticality have a promising potential for developing an integrated framework of computations, that can help us understand how living system actively process information and learn from their continuously changing environment.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2024-05-112024-08-06
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.bbrc.2024.150069
PMID: 38754165
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biochemical and Biophysical Research Communications
  Kurztitel : Biochem Biophys Res Commun
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Orlando, Fla. : Academic Press
Seiten: - Band / Heft: 720 Artikelnummer: 150069 Start- / Endseite: - Identifikator: ISSN: 0006-291X
CoNE: https://pure.mpg.de/cone/journals/resource/954922652205_1