English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Signal-to-noise ratio versus field strength for small surface coils

Pohmann, R., Avdievich, N., & Scheffler, K. (2024). Signal-to-noise ratio versus field strength for small surface coils. NMR in Biomedicine, Epub ahead. doi:10.1002/nbm.5168.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Pohmann, R1, Author                 
Avdievich, NI1, Author                 
Scheffler, K1, Author                 
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              

Content

show
hide
Free keywords: -
 Abstract: The increasing signal-to-noise ratio (SNR) is the main reason to use ultrahigh field MRI. Here, we investigate the dependence of the SNR on the magnetic field strength, especially for small animal applications, where small surface coils are used and coil noise cannot be ignored. Measurements were performed at five field strengths from 3 to 14.1 T, using 2.2-cm surface coils with an identical coil design for transmit and receive on two water samples with and without salt. SNR was measured in a series of spoiled gradient echo images with varying flip angle and corrected for saturation based on a series of flip angle and T1 measurements. Furthermore, the noise figure of the receive chain was determined and eliminated to remove instrument dependence. Finally, the coil sensitivity was determined based on the principle of reciprocity to obtain a measure for ultimate SNR. Before coil sensitivity correction, the SNR increase in nonconductive samples is highly supralinear with B0 1.6-2.7, depending on distance to the coil, while in the conductive sample, the growth is smaller, being around linear close to the surface coil and increasing up to a B0 2.0 dependence when moving away from the coil. After sensitivity correction, the SNR increase is independent of loading with B0 2.1. This study confirms the supralinear increase of SNR with increasing field strengths. Compared with most human measurements with larger coil sizes, smaller surface coils, as mainly used in animal studies, have a higher contribution of coil noise and thus a different behavior of SNR at high fields.

Details

show
hide
Language(s):
 Dates: 2024-05
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/nbm.5168
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: NMR in Biomedicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Heyden & Son
Pages: - Volume / Issue: Epub ahead Sequence Number: - Start / End Page: - Identifier: ISSN: 0952-3480
CoNE: https://pure.mpg.de/cone/journals/resource/954925574973