日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  EEG denoising during transcutaneous auricular vagus nerve stimulation across simulated, phantom and human data

Woller, J., Menrath, D., & Gharabaghi, A. (submitted). EEG denoising during transcutaneous auricular vagus nerve stimulation across simulated, phantom and human data.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000F-5042-C 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000F-5043-B
資料種別: Preprint

ファイル

表示: ファイル

関連URL

表示:
非表示:
説明:
-
OA-Status:
Not specified

作成者

表示:
非表示:
 作成者:
Woller, JP1, 著者                 
Menrath, D, 著者
Gharabaghi, A, 著者
所属:
1Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017468              

内容説明

表示:
非表示:
キーワード: -
 要旨: Objective: The acquisition of electroencephalogram (EEG) data during neurostimulation, particularly concurrent transcutaneous electrical stimulation of the auricular vagus nerve, introduces unique challenges for data preprocessing and analysis due to the presence of significant stimulation artifacts. This study evaluates various denoising techniques to address these challenges effectively.
Methods: A variety of denoising techniques were investigated, including interpolation methods, spectral filtering, and spatial filtering techniques. The techniques evaluated included low-pass and notch filtering, spectrum interpolation, average artifact subtraction, the Zapline algorithm, and advanced methods such as independent component analysis (ICA), signal-space projection (SSP), and generalized eigendecomposition with stimulation artifact source separation (GED/SASS). The efficacy of these algorithms was evaluated across three distinct datasets: simulated data, data from a gelatin phantom model, and real human subject data.
Results: Our findings indicate that GED (SASS) and SSP significantly outperformed other methods in reducing artifacts while preserving the integrity of the EEG signal. ICA and Zapline were effective too, but came with important limitations. These methods demonstrated robustness across different data types and conditions, providing effective artifact mitigation with minimal disruption to other essential signal components.
Conclusion: This comprehensive analysis demonstrates the efficacy of advanced spatial filtering techniques in the preprocessing of EEG data during auricular vagus nerve stimulation. These methods offer promising avenues for enhancing the quality and reliability of neurostimulation-associated EEG data, facilitating a deeper understanding and wider applications in clinical and research settings.

資料詳細

表示:
非表示:
言語:
 日付: 2024-05
 出版の状態: 投稿済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1101/2024.05.13.593884
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: